Introducing Box Chains to simplify Reachability Analysis

M. Godard ${ }^{1}$
L. Jaulin ${ }^{1}$
D. Massé ${ }^{2}$
${ }^{1}$ Lab-STICC, ROBEX Team, ENSTA Bretagne
${ }^{2}$ Lab-STICC, ROBEX Team, UBO

Summer Workshop on Interval Methods, 2024

Lab-STICC

Avec le soutien de

/GENCE INNOV/ITION DÉFENSE
(1) Introduction
(2) Reachability analysis
(3) Boundary simplification

4 Conclusion

Introductive Problem

Figure：Helios

Introductive Problem

Perfect case

Perturbated case

ENSTA
bretagne

Definition

Definition (Reachable set at a point in time)

Consider a dynamical system following a state equation of the form $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$. The set of initial states and inputs are bounded i.e $\mathbf{x}(0) \in \mathbb{X}_{0}$ and $\mathbf{u} \in \mathbb{U}$. The reachable set at a certain point of time $t r$ is defined as the union of the possible system states at $t=t_{r}$:

$$
\mathcal{R}\left(t_{r}\right)=\left\{\mathbf{z} \in \mathbb{R} \mid \int_{0}^{t_{r}} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) d t, \mathbf{x}(0) \in \mathbb{X}_{0}, \mathbf{u}\left[0, t_{r}\right] \in \mathbb{U}\right\}
$$

where $\mathbf{u}\left[0, t_{r}\right]=\underset{t \in\left[0, t_{r}\right]}{\bigcup} \mathbf{u}(t)$

Illustration

ENSTA
bRETAGNE

Starting result

From [1] (Thomas Lew 2023) applied with Interval Analysis tools

Border
Figure: Frontier of the Reachable Set

Each box is the result of a guaranteed integration

Self-intersecting frontier

Figure: Self-intersecting frontier

Figure：Fake boundaries

Context

We define two functions :

- $\mathbf{f}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the frontier
- $\mathrm{g}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the normal

Both analytic expressions are unknown but we can evaluate the image of an interval by these functions.

Context

We define two functions :

- $\mathbf{f}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the frontier
- $\mathrm{g}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the normal

Both analytic expressions are unknown but we can evaluate the image of an interval by these functions.

Context

We define two functions :

- $\mathbf{f}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the frontier
- $\mathbf{g}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the normal

Both analytic expressions are unknown but we can evaluate the image of an interval by these functions.

Context

We define two functions :

- $\mathbf{f}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the frontier
- $\mathbf{g}: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ gives the normal

Both analytic expressions are unknown but we can evaluate the image of an interval by these functions.

Fake Boundary

Figure: Fake boundary

Intuition

Figure: Proposition 1

Specific case

Figure：Case to detect

Neighborhood relation

Definition

Let $\left[t_{i}\right]$ and $\left[t_{j}\right]$ be two real-value intervals. We define the neighborhood relation noted \mathcal{R}_{n} between $\left[t_{1}\right]$ and $\left[t_{2}\right]$ as :

$$
\left[t_{i}\right] \mathcal{R}_{n}\left[t_{j}\right] \Longleftrightarrow\left[t_{i}\right] \cap\left[t_{j}\right] \neq \varnothing
$$

Figure: t-plane representation of the Neighborhood relation

Box Chain relation

Definition

Let there be $\left[t_{i}\right]$ and $\left[t_{k}\right]$ two real-value intervals and $\mathbf{g}: \mathcal{S}^{1} \mapsto \mathbb{R}^{2}$. We define the box chain relation noted $\mathcal{R}_{B C}$ between $\left[t_{i}\right]$ and $\left[t_{k}\right]$ as :

$$
\left[t_{i}\right] \mathcal{R}_{B C}\left[t_{k}\right] \Longleftrightarrow \exists\left[t_{j_{1}}\right],\left[t_{j_{2}}\right], \ldots,\left[t_{j_{m}}\right] \in \mathbb{R}^{n},
$$

$$
\left(\left[t_{i}\right] \mathcal{R}_{n}\left[t_{j_{1}}\right] \cap\left[t_{j_{1}}\right] \mathcal{R}_{n}\left[t_{j_{2}}\right] \cdots \cap\left[t_{j_{m}}\right] \mathcal{R}_{n}\left[t_{k}\right]\right) \cap
$$

Box Chain relation

Definition

Let there be $\left[t_{i}\right]$ and $\left[t_{k}\right]$ two real-value intervals and $\mathbf{g}: \mathcal{S}^{1} \mapsto \mathbb{R}^{2}$. We define the box chain relation noted $\mathcal{R}_{B C}$ between $\left[t_{i}\right]$ and $\left[t_{k}\right]$ as :

$$
\begin{aligned}
& {\left[t_{i}\right] \mathcal{R}_{B C}\left[t_{k}\right] \Longleftrightarrow \exists\left[t_{j_{1}}\right],\left[t_{j_{2}}\right], \ldots,\left[t_{j_{m}}\right] \in \mathbb{R}^{n},} \\
& \left(\left[t_{i}\right] \mathcal{R}_{n}\left[t_{j_{1}}\right] \cap\left[t_{j_{1}}\right] \mathcal{R}_{n}\left[t_{j_{2}}\right] \cdots \cap\left[t_{j_{m}}\right] \mathcal{R}_{n}\left[t_{k}\right]\right) \cap
\end{aligned}
$$

Box Chain relation

Definition

Let there be $\left[t_{i}\right]$ and $\left[t_{k}\right]$ two real-value intervals and $\mathbf{g}: \mathcal{S}^{1} \mapsto \mathbb{R}^{2}$. We define the box chain relation noted $\mathcal{R}_{B C}$ between $\left[t_{i}\right]$ and $\left[t_{k}\right]$ as :

$$
\begin{gathered}
{\left[t_{i}\right] \mathcal{R}_{B C}\left[t_{k}\right] \Longleftrightarrow \exists\left[t_{j_{1}}\right],\left[t_{j_{2}}\right], \ldots,\left[t_{j_{m}}\right] \in \mathbb{R}^{n},} \\
\left(\left[t_{i}\right] \mathcal{R}_{n}\left[t_{j_{1}}\right] \cap\left[t_{j_{1}}\right] \mathcal{R}_{n}\left[t_{j_{2}}\right] \cdots \cap\left[t_{j_{m}}\right] \mathcal{R}_{n}\left[t_{k}\right]\right) \cap \\
0 \notin \llbracket[\mathbf{g}]\left(\left[t_{i}\right]\right),[\mathbf{g}]\left(\left[t_{j_{1}}\right]\right), \ldots,[\mathbf{g}]\left(\left[t_{j_{m}}\right]\right),[\mathbf{g}]\left(\left[t_{k}\right]\right) \rrbracket
\end{gathered}
$$

Figure：Show video

Figure: t-plane representation of the BoxChain Relation

Detecting intersections

Figure: Box Chain decomposition

Figure: Intersections detected

Propostion 1

Figure: Propostion 1

Figure: Interior detection

ENSTA
BRETAGNE

Propostion 2

Figure: Proposition 2

Figure: Fake boundaries deleted

3D Box Chains

Figure: Show video

Thank you for listening

Bibliography

[1] Lew T., Bonnali R., Pavone M., Exact Characterization of the Convex Hulls of Reach- able Sets, 62nd IEEE Conference on Decision and Control (CDC 2023), Dec 2023, Singapour, Singapore.

Appendix

$$
\mathbf{O D E}_{w(0)}:\left\{\begin{array}{l}
\dot{x}(t)=f(x(t))+\left(n^{\partial \mathcal{W}}\right)^{-1}(q(t)), \\
\dot{q}(t)=-\operatorname{Proj}_{q(t)}\left(\nabla f(x(t))^{\top} q(t)\right), \\
(x(0), q(0))=\left(x^{0}, n^{\partial \mathcal{W}}(w(0))\right) .
\end{array}\right.
$$

Figure: ODE

