Boundary simplification

Conclusion 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introducing Box Chains to simplify Reachability Analysis

$M. \ {\sf Godard}^1 \quad {\sf L}. \ {\sf Jaulin}^1 \quad {\sf D}. \ {\sf Masse}^2$

¹Lab-STICC, ROBEX Team, ENSTA Bretagne

²Lab-STICC, ROBEX Team, UBO

Summer Workshop on Interval Methods, 2024

- 2 Reachability analysis
- Boundary simplification

<□ ▶ < @ ▶ < \= ▶ < \= > \= ∽ \<\> < \> < \> < \> < \> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\> < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\\ > < \\ > < \\ > < \\\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > < \\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ > <\\ >

Boundary simplification

Conclusion 000

Introductive Problem

Figure: Helios

Reachability analysis

Boundary simplification

Conclusion

Introductive Problem

<**□ > <** @ > < ≧ > < ≧ > ≧ の Q @_{4/22}

Reachability analysis

Boundary simplification

Conclusion 000

Perfect case

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q ℃ 5/22

Boundary simplification

Conclusion 000

Perturbated case

∽९९6/22

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Boundary simplification

Conclusion 000

Definition

Definition (Reachable set at a point in time)

Consider a dynamical system following a state equation of the form $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$. The set of initial states and inputs are bounded i.e $\mathbf{x}(0) \in \mathbb{X}_0$ and $\mathbf{u} \in \mathbb{U}$. The reachable set at a certain point of time tr is defined as the union of the possible system states at $t = t_r$:

$$\mathcal{R}(t_r) = \left\{ \mathbf{z} \in \mathbb{R} | \int_0^{t_r} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) dt, \mathbf{x}(0) \in \mathbb{X}_0, \mathbf{u}[0, t_r] \in \mathbb{U} \right\}$$

where $\mathbf{u}[0, t_r] = \bigcup_{t \in [0, t_r]} \mathbf{u}(t)$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reachability analysis ○●○○

Boundary simplification

Conclusion 000

Illustration

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @_{8/22}

Reachability analysis

Boundary simplification

Conclusion 000

X₀

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ - のへで_{8/22}

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ - のへで_{8/22}

Boundary simplification

Conclusion 000

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @_{8/22}

Boundary simplification

Conclusion 000

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ - のへで_{8/22}

Boundary simplification

Conclusion 000

Starting result

From [1] (Thomas $\rm Lew$ 2023) applied with Interval Analysis tools

Figure: Frontier of the Reachable Set

Each box is the result of a guaranteed integration

Boundary simplification

Conclusion

Self-intersecting frontier

Figure: Self-intersecting frontier

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (P_{10/22})

Figure: Fake boundaries

Reachability analysis

Boundary simplification

<□ ▶ < @ ▶ < \ > ▲ \ > ↓ \ = り < \ > ○ < ♡ < ♡ < 11/22

Conclusion 000

We define two functions :

• $\mathbf{f}:\mathcal{S}^1
ightarrow \mathbb{R}^2$ gives the frontier

• $\mathbf{g}: \mathcal{S}^1
ightarrow \mathbb{R}^2$ gives the normal

Both analytic expressions are unknown but we can evaluate the image of an interval by these functions.

Reachability analysis

Boundary simplification

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 11/22

Conclusion 000

We define two functions :

- $f:\mathcal{S}^1 \to \mathbb{R}^2$ gives the frontier
- $\bullet~\mathbf{g}:\mathcal{S}^1\to\mathbb{R}^2$ gives the normal

Both **analytic expressions** are **unknown** but we can **evaluate the image** of an interval by these functions.

Reachability analysis

Boundary simplification

Conclusion 000

We define two functions :

- $f:\mathcal{S}^1 \to \mathbb{R}^2$ gives the frontier
- $\mathbf{g}:\mathcal{S}^1 \rightarrow \mathbb{R}^2$ gives the normal

Both **analytic expressions** are **unknown** but we can **evaluate the image** of an interval by these functions.

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 11/22

Introd	uction
0000	

Boundary simplification

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 11/22

We define two functions :

- $f:\mathcal{S}^1 \to \mathbb{R}^2$ gives the frontier
- $\mathbf{g}:\mathcal{S}^1 \rightarrow \mathbb{R}^2$ gives the normal

Both **analytic expressions** are **unknown** but we can **evaluate the image** of an interval by these functions.

Boundary simplification

Conclusion 000

Fake Boundary

Figure: Fake boundary

・ロト ・四ト ・日下 ・日下

Reachability analysis

Boundary simplification

Conclusion

Intuition

Figure: Proposition 1

Reachability analysis

Boundary simplification

Conclusion 000

Specific case

Figure: Case to detect

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @_{14/22}

Boundary simplification

Conclusion 000

Neighborhood relation

Definition

Let $[t_i]$ and $[t_j]$ be two real-value intervals. We define the neighborhood relation noted \mathcal{R}_n between $[t_1]$ and $[t_2]$ as :

$$[t_i] \mathcal{R}_n[t_j] \Longleftrightarrow [t_i] \cap [t_j] \neq \emptyset$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 15/22

Boundary simplification

・ロト ・御ト ・ヨト ・ヨト

Conclusion

Figure: t-plane representation of the Neighborhood relation

æ

Boundary simplification

Box Chain relation

Definition

Let there be $[t_i]$ and $[t_k]$ two real-value intervals and $\mathbf{g} : S^1 \mapsto \mathbb{R}^2$. We define the box chain relation noted \mathcal{R}_{BC} between $[t_i]$ and $[t_k]$ as :

$$\left[t_{i}
ight]\mathcal{R}_{BC}\left[t_{k}
ight] \Longleftrightarrow \exists \left[t_{j_{1}}
ight]$$
 , $\left[t_{j_{2}}
ight]$, \ldots , $\left[t_{j_{m}}
ight] \in \mathbb{R}^{n}$,

 $([t_i] \mathcal{R}_n[t_{j_1}] \cap [t_{j_1}] \mathcal{R}_n[t_{j_2}] \cdots \cap [t_{j_m}] \mathcal{R}_n[t_k]) \cap$

 $0 \notin \llbracket [\mathbf{g}] ([t_i]), [\mathbf{g}] ([t_{j_1}]), \dots, [\mathbf{g}] ([t_{j_m}]), [\mathbf{g}] ([t_k]) \rrbracket$

Boundary simplification

Box Chain relation

Definition

Let there be $[t_i]$ and $[t_k]$ two real-value intervals and $\mathbf{g} : S^1 \mapsto \mathbb{R}^2$. We define the box chain relation noted \mathcal{R}_{BC} between $[t_i]$ and $[t_k]$ as :

$$\left[t_{i}
ight]\mathcal{R}_{BC}\left[t_{k}
ight] \Longleftrightarrow \exists \left[t_{j_{1}}
ight]$$
 , $\left[t_{j_{2}}
ight]$, \ldots , $\left[t_{j_{m}}
ight] \in \mathbb{R}^{n}$,

 $([t_i] \mathcal{R}_n[t_{j_1}] \cap [t_{j_1}] \mathcal{R}_n[t_{j_2}] \cdots \cap [t_{j_m}] \mathcal{R}_n[t_k]) \cap$

 $0 \notin \llbracket [\mathbf{g}] ([t_i]), [\mathbf{g}] ([t_{j_1}]), \dots, [\mathbf{g}] ([t_{j_m}]), [\mathbf{g}] ([t_k]) \rrbracket$

Boundary simplification

Box Chain relation

Definition

Let there be $[t_i]$ and $[t_k]$ two real-value intervals and $\mathbf{g} : S^1 \mapsto \mathbb{R}^2$. We define the box chain relation noted \mathcal{R}_{BC} between $[t_i]$ and $[t_k]$ as :

$$\left[t_{i}
ight]\mathcal{R}_{BC}\left[t_{k}
ight] \Longleftrightarrow \exists \left[t_{j_{1}}
ight]$$
 , $\left[t_{j_{2}}
ight]$, \ldots , $\left[t_{j_{m}}
ight] \in \mathbb{R}^{n}$,

 $([t_i] \mathcal{R}_n[t_{j_1}] \cap [t_{j_1}] \mathcal{R}_n[t_{j_2}] \cdots \cap [t_{j_m}] \mathcal{R}_n[t_k]) \cap$

 $0 \notin \llbracket [\mathbf{g}] ([t_i]), [\mathbf{g}] ([t_{j_1}]), \dots, [\mathbf{g}] ([t_{j_m}]), [\mathbf{g}] ([t_k]) \rrbracket$

Boundary simplification

Conclusion 000

Figure: Show video

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @_{16/22}

Figure: t-plane representation of the BoxChain Relation

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @ 16/22

Boundary simplification

Conclusion 000

Detecting intersections

Figure: Box Chain decomposition

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (P_{17/22})

Figure: Intersections detected

◆□▶ ◆母▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (P_{17/22})

Boundary simplification 0000000●0

Conclusion 000

Propostion 1

Figure: Propostion 1

(日)(御)(日)(日)(日)

Figure: Interior detection

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @_{18/22}

Reachability analysis

Boundary simplification 0000000●

Conclusion 000

Propostion 2

Figure: Proposition 2

Figure: Fake boundaries deleted

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @_{19/22}

Reachability analysis

Boundary simplification

Conclusion •00

3D Box Chains

Figure: Show video

Thank you for listening

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ 圖 의 Q @ 20/22

Boundary simplification

Bibliography

[1] LEW T., BONNALI *R.*, PAVONE *M.*, Exact Characterization of the Convex Hulls of Reach- able Sets, 62nd IEEE Conference on Decision and Control (CDC 2023), Dec 2023, Singapour, Singapore.

<□ ▶ < @ ▶ < ≣ ▶ < ≣ ▶ ■ ■ の Q @ 21/22

Boundary simplification

Conclusion ○○●

Appendix

$$\mathbf{ODE}_{w(0)} \colon \begin{cases} \dot{x}(t) = f(x(t)) + (n^{\partial \mathcal{W}})^{-1} (q(t)) ,\\ \dot{q}(t) = -\mathsf{Proj}_{q(t)} \left(\nabla f(x(t))^{\top} q(t) \right) , \\ (x(0), q(0)) = (x^{0}, n^{\partial \mathcal{W}}(w(0))). \end{cases}$$
(7)

Figure: ODE

<□ ▶ < @ ▶ < \= ▶ < \= > \= ♡ < ♡ < ≥ 22/22