Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000		0000	00	0

Interval-based validation of a nonlinear estimator

 $M. \ Godard^1 \quad L. \ Jaulin^1 \quad D. \ Massé^2$

¹Lab-STICC, ROBEX Team, ENSTA Bretagne

²Lab-STICC, ROBEX Team, UBO

International Workshop on Reliable Engineering Computing, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000		0000	00	O

2 Formalism

Global Optimization algorithm

<□ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ の < ?_{2/19}

Introduction ●000	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion	Bibliography 0
Introduc	ction				

What is an estimator ?

< □ > < □ > < 壹 > < 壹 > < 壹 > 壹 · ⑦ < ♡ < ♡ 3/19

Introduction 0●00	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography 0
Definitio	on				

Estimator In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data [Wikipedia]

<ロト < 団ト < 臣ト < 臣ト 三 のへで_{4/19}

Introduction 00●0	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography 0
Example	2				

Figure: [1] An estimation : GNSS positioning

Introduction 000●	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion	Bibliography 0
Problem	atic				

Figure: Error of the estimation

Introduction 0000	Formalism ●00	Global Optimization algorithm	Application 0000	Conclusion	Bibliography 0		
Definitions							

$\textbf{x} \in \mathbb{X}_0$ Set of possible parameters

- $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{e}$ Noisy observation
- $\mathbf{e} \in \mathbb{E}$ Noise set
- $\hat{\mathbf{x}} = \psi(\mathbf{y})$ Estimator to validate
- $\boldsymbol{\epsilon}(\mathbf{x}) = ||\mathbf{x} \hat{\mathbf{x}}||$ Error of the estimator

 $\bar{\boldsymbol{\epsilon}} = \max(\boldsymbol{\epsilon}(\mathbf{x}))$

<ロ> < 母> < 母> < 目> < 目> 目 の < で7/19

Introduction 0000	Formalism ●00	Global Optimization algorithm	Application 0000	Conclusion	Bibliography 0
Definiti	ons				

- $\textbf{x} \in \mathbb{X}_0$ Set of possible parameters
- $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{e}$ Noisy observation
- $\mathbf{e} \in \mathbb{E}$ Noise set
- $\hat{\mathbf{x}} = \psi(\mathbf{y})$ Estimator to validate
- $\boldsymbol{\varepsilon}(\mathbf{x}) = ||\mathbf{x} \hat{\mathbf{x}}||$ Error of the estimator

 $\bar{\boldsymbol{\epsilon}} = \max(\boldsymbol{\epsilon}(\mathbf{x}))$

<ロ> < 母> < 母> < 目> < 目> 目 の < で7/19

Introduction F	ormalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	00		0000	00	O
Definition					

- $\textbf{x} \in \mathbb{X}_0$ Set of possible parameters
- $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{e}$ Noisy observation
- $\boldsymbol{e} \in \mathbb{E}$ Noise set
- $\hat{\mathbf{x}} = \psi(\mathbf{y})$ Estimator to validate
- $\boldsymbol{\varepsilon}(\mathbf{x}) = ||\mathbf{x} \hat{\mathbf{x}}||$ Error of the estimator

 $\bar{\boldsymbol{\epsilon}} = \max(\boldsymbol{\epsilon}(\mathbf{x}))$

<ロ> < 母> < 母> < 目> < 目> 目 の < で7/19

Introduction F	ormalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	00		0000	00	O
Definition					

- $\textbf{x} \in \mathbb{X}_0$ Set of possible parameters
- $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{e}$ Noisy observation
- $\boldsymbol{e} \in \mathbb{E}$ Noise set
- $\hat{\mathbf{x}}=\psi(\mathbf{y})$ Estimator to validate
- $\epsilon(\mathbf{x}) = ||\mathbf{x} \hat{\mathbf{x}}||$ Error of the estimator

 $\bar{\epsilon} = \max(\epsilon(\mathbf{x}))$

<□> < @ > < ≧ > < ≧ > ≧ > りへ(?_{7/19})

Introduction 0000	Formalism ●00	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography O
Definitions					

- $\textbf{x} \in \mathbb{X}_0$ Set of possible parameters
- $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{e}$ Noisy observation
- $\boldsymbol{e} \in \mathbb{E}$ Noise set
- $\hat{\mathbf{x}}=\psi(\mathbf{y})$ Estimator to validate
- $\boldsymbol{\epsilon}(\mathbf{x}) = ||\mathbf{x} \hat{\mathbf{x}}||$ Error of the estimator

 $\bar{\epsilon} = \max(\epsilon(\mathbf{x}))$

<□> < @ > < ≧ > < ≧ > ≧ > りへ(?_{7/19})

Introduction 0000	Formalism ●00	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography O
Definitions					

- $\textbf{x} \in \mathbb{X}_0$ Set of possible parameters
- $\mathbf{y} = \mathbf{g}(\mathbf{x}) + \mathbf{e}$ Noisy observation
- $\boldsymbol{e} \in \mathbb{E}$ Noise set
- $\hat{\mathbf{x}}=\psi(\mathbf{y})$ Estimator to validate
- $\boldsymbol{\epsilon}(\mathbf{x}) = ||\mathbf{x} \hat{\mathbf{x}}||$ Error of the estimator

 $\bar{\boldsymbol{\epsilon}} = \max(\boldsymbol{\epsilon}(\mathbf{x}))$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q (?/19

Introduction 0000	Formalism 0●0	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography O
-					

Figure: Error in the estimation

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	00●		0000	00	0
Formalis	sm				

Equivalently, this problem can be written as below:

$$\begin{array}{l} \left(\begin{array}{c} \max \epsilon \left(\mathbf{x} \right) = \| \mathbf{x} - \psi \left(\mathbf{g} \left(\mathbf{x} \right) + \mathbf{e} \right) \| \\ \mathbf{x} \in \mathbb{X}_{0} \\ \mathbf{e} \in \mathbb{E} \end{array} \right) \end{array}$$

It can be interpreted as a maximization problem of ϵ or as a minimization problem of $-\epsilon$.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ∽ Q (~9/19

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	00●		0000	00	O
Formali	sm				

Equivalently, this problem can be written as below:

$$\left\{ \begin{array}{l} \max \varepsilon \left(\mathbf{x} \right) = \left\| \mathbf{x} - \psi \left(\mathbf{g} \left(\mathbf{x} \right) + \mathbf{e} \right) \right\| \\ \mathbf{x} \in \mathbb{X}_{0} \\ \mathbf{e} \in \mathbb{E} \end{array} \right.$$

It can be interpreted as a maximization problem of ϵ or as a minimization problem of $-\epsilon$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ・ つ へ (*g/19)

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	●○○	0000	00	O
Definitio	on				

An Optimization problem is defined by:

- An objective function to minimize $f: \mathbb{R}^n \mapsto \mathbb{R}$
- A domain $X_0 \subseteq \mathbb{R}^n$
- A set of conditions g_i {x₁,..., x_n} ≤ 0 for i ∈ {1,..., m}. g_i are functions of type ℝⁿ → ℝ.

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 10/19

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	●○○	0000	00	O
Definitio	on				

An Optimization problem is defined by:

- An objective function to minimize $f: \mathbb{R}^n \mapsto \mathbb{R}$
- A domain $\mathbb{X}_0 \subseteq \mathbb{R}^n$
- A set of conditions g_i {x₁,..., x_n} ≤ 0 for i ∈ {1,..., m}. g_i are functions of type ℝⁿ → ℝ.

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 10/19

Introduction 0000	Formalism 000	Global Optimization algorithm ●○○	Application 0000	Conclusion 00	Bibliography 0
Definitio	on				

An Optimization problem is defined by:

- An objective function to minimize $f: \mathbb{R}^n \mapsto \mathbb{R}$
- A domain $\mathbb{X}_0 \subseteq \mathbb{R}^n$
- A set of conditions $g_i \{x_1, \ldots, x_n\} \leq 0$ for $i \in \{1, \ldots, m\}$. g_i are functions of type $\mathbb{R}^n \mapsto \mathbb{R}$.

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 10/19

Introduction	Formalism	Global Optimization algorithm $\circ \bullet \circ$	Application	Conclusion	Bibliography
0000	000		0000	00	0
The Mc	ore-Skel	boe algorithm			

The Moore-Skelboe algorithm gives an box containing the global minimum of a function with width inferior to a choosen criteria,

noted δ below:

Let $\{B_0\}$ be a cover of X_0 while $w(f(B_0)) > \delta$ do \triangleright stopping criterion to choose Remove B_0 from the cover Split B_0 Insert the result into the cover in increasing order of $lb(f(B_i))$, for $i = \{0, ..., N-1\}$ end while return $f(B_0) \triangleright \mu \in f(B_0)$

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	○●○	0000	00	O
	oro Skol	haa algorithm			

The Moore-Skelboe algorithm gives an box containing the global minimum of a function with width inferior to a choosen criteria, noted δ below:

Let $\{B_0\}$ be a cover of X_0 while $w(f(B_0)) > \delta$ do \triangleright stopping criterion to choose Remove B_0 from the cover Split B_0 Insert the result into the cover in increasing order of $Ib(f(B_i))$, for $i = \{0, ..., N-1\}$ end while return $f(B_0) \triangleright \mu \in f(B_0)$

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	○●○	0000	00	O
	oro Skol	haa algorithm			

The Moore-Skelboe algorithm gives an box containing the global minimum of a function with width inferior to a choosen criteria, noted δ below:

Let $\{B_0\}$ be a cover of X_0 while $w(f(B_0)) > \delta$ do \triangleright stopping criterion to choose Remove B_0 from the cover Split B_0 Insert the result into the cover in increasing order of $Ib(f(B_i))$, for $i = \{0, ..., N - 1\}$ end while return $f(B_0) \triangleright \mu \in f(B_0)$

Introduction	Formalism	Global Optimization algorithm $O \bullet O$	Application	Conclusion	Bibliography
0000	000		0000	00	O
The Me	oro Skol	haa algorithm			

The Moore-Skelboe algorithm gives an box containing the global minimum of a function with width inferior to a choosen criteria, noted δ below:

Let $\{B_0\}$ be a cover of X_0 while $w(f(B_0)) > \delta$ do \triangleright stopping criterion to choose Remove B_0 from the cover Split B_0 Insert the result into the cover in increasing order of $Ib(f(B_i))$, for $i = \{0, ..., N-1\}$ end while return $f(B_0) \triangleright \mu \in f(B_0)$

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	○●○	0000	00	O
The Me	oro Skol	haa algorithm			

The Moore-Skelboe algorithm gives an box containing the global minimum of a function with width inferior to a choosen criteria, noted δ below:

Let $\{B_0\}$ be a cover of X_0 while $w(f(B_0)) > \delta$ do \triangleright stopping criterion to choose Remove B_0 from the cover Split B_0 Insert the result into the cover in increasing order of $Ib(f(B_i))$, for $i = \{0, ..., N-1\}$ end while return $f(B_0) \qquad \triangleright \mu \in f(B_0)$

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	○●○	0000	00	O
	oro Skol	haa algorithm			

The Moore-Skelboe algorithm gives an box containing the global minimum of a function with width inferior to a choosen criteria, noted δ below:

Let $\{B_0\}$ be a cover of X_0 while $w(f(B_0)) > \delta$ do \triangleright stopping criterion to choose Remove B_0 from the cover Split B_0 Insert the result into the cover in increasing order of $Ib(f(B_i))$, for $i = \{0, ..., N - 1\}$ end while return $f(B_0) \qquad \triangleright \mu \in f(B_0)$

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000	○○●	0000		0
Example					

Figure: Moore-Skelboe algorithm - Step 2

æ .

イロト イロト イヨト イヨト

Figure: Moore-Skelboe algorithm - Step 3

æ.,

イロト イタト イヨト イヨト

Figure: Moore-Skelboe algorithm - Step 4

かへで13/19

æ .

イロト イタト イヨト イヨト

Introduction 0000	Formalism 000	Global Optimization algorithm	Application ●000	Conclusion	Bibliography O
	tion				

Figure: Problem description

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 0000	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography 0
Problem	I				

Observation Function

$$\mathbf{g}(\mathbf{x}) = \left(\begin{array}{c} d_{\mathbf{a}} \\ d_{b} \\ d_{c} \end{array}\right)$$

Error Function

$$\boldsymbol{\epsilon}\left(\mathbf{x}\right)=\left\|\mathbf{x}-\boldsymbol{\psi}\left(\mathbf{g}\left(\mathbf{x}\right)+\mathbf{e}\right)\right\|$$

Moore-Skelboe on $-\epsilon$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで_{14/19}

Introduction 0000	Formalism 000	Global Optimization algorithm	Application 00●0	Conclusion	Bibliography 0
CNN Fs	timator				

Maximal error in \mathbb{X}_0 : 1.67m

Figure: Neural Network Estimator

ൗ९⇔15/19

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ○注。

Introduction 0000	Formalism 000	Global Optimization algorithm	Application 000●	Conclusion	Bibliography 0
Simulat	ion				

Figure: Visualization of $\bar{\epsilon}$

< □ > < @ > < ≧ > < ≧ > ≧ の へ ? 16/19

Introduction 0000	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion ●○	Bibliography 0
Conclus	ion				
conclas					

• Validation of a nonlinear estimator (non interval-based)

• Guaranteed result even without a guaranteed estimator

↓ □ ▶ ↓ @ ▶ ↓ E ▶ ↓ E ♥ \Q \P 17/19

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000		0000	●0	O
Conclusi	on				

- Validation of a nonlinear estimator (non interval-based)
- Guaranteed result even without a guaranteed estimator

<ロト < 母 > < 呈 > < 呈 > 三 の < で_{17/19}

Introduction	Formalism	Global Optimization algorithm	Application	Conclusion	Bibliography
0000	000		0000	O	0
Questio	ns				

mael.godard@ensta-bretagne.org

かへで18/19

Introduction 0000	Formalism 000	Global Optimization algorithm	Application 0000	Conclusion 00	Bibliography ●	
Bibliography						

 BOSSER P., Support de cours, GNSS : Systèmes globaux de positionnement par satellite, 2017.
VAN EMDEN M., MOA B., Termination Criteria in the Moore-Skelboe Algorithm for Global Optimization by Interval Arithmetic, 2004.

