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Introduction

What is an estimator ?
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Definition

Estimator In statistics, an estimator is a rule for calculating an
estimate of a given quantity based on observed data
[Wikipedia]
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Example

Figure: [1] An estimation : GNSS positioning
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Problematic

Figure: Error of the estimation
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Definitions

x ∈ X0 Set of possible parameters

y = g(x) + e Noisy observation

e ∈ E Noise set

x̂ = ψ(y) Estimator to validate

ϵ(x) = ||x − x̂|| Error of the estimator

ϵ̄ = max(ϵ(x))
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Error from estimation

Figure: Error in the estimation
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Formalism

Equivalently, this problem can be written as below:


max ϵ (x) = ∥x − ψ (g (x) + e) ∥

x ∈ X0
e ∈ E

It can be interpreted as a maximization problem of ϵ or as a
minimization problem of −ϵ.
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Definition

An Optimization problem is defined by:

An objective function to minimize f : Rn 7→ R

A domain X0 ⊆ Rn

A set of conditions gi {x1, . . . , xn} ≤ 0 for i ∈ {1, . . . ,m}. gi
are functions of type Rn 7→ R.



10/19

Introduction Formalism Global Optimization algorithm Application Conclusion Bibliography

Definition

An Optimization problem is defined by:

An objective function to minimize f : Rn 7→ R

A domain X0 ⊆ Rn

A set of conditions gi {x1, . . . , xn} ≤ 0 for i ∈ {1, . . . ,m}. gi
are functions of type Rn 7→ R.



10/19

Introduction Formalism Global Optimization algorithm Application Conclusion Bibliography

Definition

An Optimization problem is defined by:

An objective function to minimize f : Rn 7→ R

A domain X0 ⊆ Rn

A set of conditions gi {x1, . . . , xn} ≤ 0 for i ∈ {1, . . . ,m}. gi
are functions of type Rn 7→ R.



11/19

Introduction Formalism Global Optimization algorithm Application Conclusion Bibliography

The Moore-Skelboe algorithm

The Moore-Skelboe algorithm gives an box containing the global
minimum of a function with width inferior to a choosen criteria,
noted δ below:

Let {B0} be a cover of X0
while w (f (B0)) > δ do ▷ stopping criterion to choose

Remove B0 from the cover
Split B0
Insert the result into the cover in increasing order
of lb (f (Bi )), for i = {0, . . . ,N − 1}

end while
return f (B0) ▷ µ ∈ f (B0)
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Example

Figure: Moore-Skelboe algorithm - Step 1
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Figure: Moore-Skelboe algorithm - Step 2
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Figure: Moore-Skelboe algorithm - Step 3
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Figure: Moore-Skelboe algorithm - Step 4
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Application

Figure: Problem description
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Problem

Observation Function

g(x) =

 da
db
dc


Error Function

ϵ (x) = ∥x − ψ (g (x) + e) ∥

Moore-Skelboe on −ϵ
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CNN Estimator

Figure: Neural Network Estimator
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Simulation

Figure: Visualization of ϵ̄
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Conclusion

Validation of a nonlinear estimator (non interval-based)
Guaranteed result even without a guaranteed estimator
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Questions

mael.godard@ensta-bretagne.org
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