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Motivation

Figure: Autonomous robot Helios
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Objective

Figure: Thesis' objective
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Flow function

Definition (Flow function)

Consider a dynamical system

x = f(x(t),u(t)),x(0) € Xo,uecld

This equation admits a unique solution called flow function, noted
¢ : Xo xU xR — R”, that satisfies:

V(xo,u(.),t) € Xo XU X R, ¢p(xo,u(.), t) = x(t)
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Reachable set

Definition (Reachable set at a point in time)

Consider a dynamical system

x = f(x(t),u(t)),x(0) € Xo,ueld

The reachable set at time t, noted R(t,) can then be defined by :

R(t,) = {x € R"|3xo € Xo, Iu(.) € U, p(x0,u(.), t,) = x}
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Reachability Analysis

From the litterature [1], finding the reachable set at time t from
an initial state xg comes down to integrating the ODE :

X(t)zf(X(t))+( Y)"(q (t))
ODE,, (o) : = —Projqt) (VF(x(t)) Ta(t)

(x(0),q(0)) = (Xo, °Y(u(0)))
On the boundary of Xg
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Figure: Reachable set
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Wrapping effect

Figure: Enclosing of the unit circle with boxes and parallelepipeds
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Notations and definitions

@ The studied function is smooth, at least C1.
@ We denote S” the unit sphere of dimension n
@ We limit our ODEs to the ones of the form:

x=7(x)
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Parallelepiped definition

Definition (Parallelepiped)

A parallelepiped is a subset of IR"” of the form

(yy=y+A-[-L1)"={y+A-x|xe[-1,1]"}

) -

Figure: 2D parallelepiped ENST2 it
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Parallelepiped inclusion function

Definition (Parallelepiped inclusion function)

A parallelepipedic inclusion function is a function

IR™ — PR”
©: T S mw)

such that

f([x]) < (F(Ix])
And (f)([x]) is a parallelepiped.
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Figure: Parallelepiped inclusion function
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Approximation theorem

Consider a smooth function f from R™ to R", and a box
[x] € IR™ with center x . Define the linear approximation

We then have

where

p = ee(ix)=up (| (| 55| 60
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R"

x € R™

i

[x]

Figure: Approximation theorem
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Corollary

Given a function f from R™ to R", and a box [x] € IR™. We have
f([x]) € £([x]) +pU

where U is the unit sphere, p = p¢([x]) and £€([x]) is the linear
approximation defined earlier.
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Figure: Corollary in 2D
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Parallelepiped inflation
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Figure: Parallelepiped inflation in 2D
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Parallelepipedic inclusion function

Given f : R™ — IR" . A parallelepipedic inclusion function is
obtained as follows:

O(x]) = y+A-[-11)"

with
Ay = :,’x<> fad([x])
p = ub([[([&] (X)) = & &) (x]-%)])
A — Ianate(Ao 0)
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Box Atlas

Figure: Box atlas [2]
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Image of an interval by a nonlinear function

Assume we want to compute the image of [x] = [—1, 1] by the
function g defined by

Vx € [x], ¢o(x) = < cos(%)f(()) >

The Jacobian matrix is
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’Subdivisions\ € ‘ P ‘

1 2 0.60
4 0.5 | 0.042
10 0.2 | 6.4e-3
20 0.1 ] 1.6e-3

N
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Figure: Approximations of 9o([—1,1])
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Parallelepipedic inclusion of the circle

Let us define s; = X2 the rotation of % with respect to k. The
parallelepipedic inclusion of the circle can be obtained by the
symmetries :

Y= {1,51,512,5:[1}

The unit circle then corresponds to:

S'=Jooypo([-1,1])

e




Image of the unit circle
0000®0000000

O

Figure: Parallelepipedic inclusion of the unit circle St
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Image of the unit circle by a nonlinear function

Consider a function f : R? — IR?. We can then write the image of
the unit circle S by f as :

f(Sh) =g ([-1.1])

]

Where (g;) is a parallelepiped inclusion function of :

gi=foojoiyp
For graphical purposes, we consider the Henon map defined by :
a2
f(x) = < 2t L= ax ),a=1.4,b:0.3

bX 1
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Figure: Image of the unit circle by the Henon map
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Figure: Image of the unit circle by the Henon map
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Comparison
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Figure: Natural, Centered [3] [4] and Parallelepipedic inclusion for 20
subdivisions
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Figure: Area of the approximation depending on the number of
subdivisions
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Convergence of the parallelepiped inclusion

Let us denote by A the area of the approximation and € the width
of a subdivision. If we note k the number of subdivsions of [—1, 1],

=2

If A converges in €” then
A
— —cceR
€M e—0

Then
log(A) —— log(c) + n- log(€)
e—0
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Figure: Convergence of the natural, centered and parallelepedic inclusion

The parallelepiped inclusion seems to converge in GQENSTa -
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Variationnal equation

Consider the system

% = v(x)
X(O) = Xp € St
The solution of this ODE is the flow function ¢x,(t). If we denote
A(xp, t) = a;(,;o (t) . We have the variational equation
. d")/
A="Tx) A
7 %)
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Image of the unit circle by an ODE

Integrating the ODE :

7(%)
< (x) - A

0681

| QJ‘QJ ||

<>_

over a time t for any xg € S will output both ¢y, (t) and aq)xo (t).
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Integration of the pendulum with CAPD

Consider the equation of the pendulum:

o — X1\ _ X2
T\ x2 ) T\ =5sin(xy — 0.5) — 0.5%

We then have :

%(X) - ( —5-cos(0x1 —0.5) —(1).5 )

We integrate the ODE with CAPD [5] and use the parallelepipedic
inclusion.
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Figure: Integration of the pendulum for 5sec with CAPD alone for 5
subdivisions
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Figure: Integration of the pendulum for 5sec with CAPD an

parallelepipeds for 5 subdivisions
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3D parallelepiped inflation

Figure: 3D parallelepiped inflation
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Lorenz system

The Lorenz system is defined by :

X1 U’(XQ — Xl)
X:’y X2 = PX1 — X2 — X1X3 ,0':10,p:28,,3:§
X3 x1x2 — Bx3

We then have

dy -0 0
T(X) = P —1 —X1
X
X2 x1 —P

We integrate the ODE with CAPD and use the parallelepipedic
inclusion. ENST@ | & it
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Figure: Lorenz system after 0.1s of integration with capd alone (¢ = 0.1)
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Figure: Lorenz system after 0.1s of integration with CAPD and
parallelepiped inclusion (e = 0.1)
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Preservation of the topology

Figure: Inside of the image set
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Comparison
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Figure: Convergence of both methods
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Conclusion

@ Parallelepipedic inclusion working in IR”
@ Seems to converge in €2, to prove

e Studying the ODE in the form x = 7(x, u) for Reachability
Analysis

@ Projection of the enclosure
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Thank you for listening
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