Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Enclosing of the image of a sphere by a nonlinear function using parallelepipeds

Maël Godard¹ Luc Jaulin¹ Damien Massé²

¹Lab-STICC, ROBEX Team, ENSTA

²Lab-STICC, ROBEX Team, UBO

International Online Seminar on Interval Methods in Control Engineering

1 Introduction

- 2 Parallelepipedic approximation
- Image of the unit circle
- Integration of an ODE
- 5 Image of the unit sphere
- 6 Conclusion

<ロ> < 母> < 母> < 目> < 目> 目 のへで2/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion oo

Motivation

Figure: Autonomous robot Helios

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion oo

Objective

Figure: Thesis' objective

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ ヨ ・ の へ (% 4/45)

Flow function

Definition (Flow function)

Consider a dynamical system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t),\mathbf{u}(t)),\mathbf{x}(0) \in \mathbb{X}_{0},\mathbf{u} \in \mathcal{U}$$

This equation admits a unique solution called flow function, noted $\phi: X_0 \times \mathcal{U} \times \mathbb{R} \to \mathbb{R}^n$, that satisfies:

$$\forall (\mathbf{x}_0, \mathbf{u}(.), t) \in \mathbb{X}_0 \times \mathcal{U} \times \mathbb{R}, \phi(\mathbf{x}_0, \mathbf{u}(.), t) = \mathbf{x}(t)$$

Reachable set

Definition (Reachable set at a point in time)

Consider a dynamical system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{x}(0) \in \mathbb{X}_0, \mathbf{u} \in \mathcal{U}$$

The reachable set at time t_r noted $\mathcal{R}(t_r)$ can then be defined by :

$$\mathcal{R}(t_r) = \{ \mathbf{x} \in \mathbb{R}^n | \exists \mathbf{x}_0 \in \mathbb{X}_0, \exists \mathbf{u}(.) \in \mathcal{U}, \phi(\mathbf{x}_0, \mathbf{u}(.), t_r) = \mathbf{x} \}$$

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Reachability Analysis

From the litterature [1], finding the reachable set at time *t* from an initial state \mathbf{x}_0 comes down to integrating the ODE :

$$\mathbf{ODE}_{w(0)}: \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + (n^{\partial U})^{-1}(q(t)) \\ \dot{\mathbf{q}}(t) = -Proj_{\mathbf{q}(t)}(\nabla \mathbf{f}(\mathbf{x}(t))^{T}\mathbf{q}(t) \\ (\mathbf{x}(0), \mathbf{q}(0)) = (\mathbf{x}_{0}, n^{\partial U}(\mathbf{u}(0))) \end{cases}$$

ENST2 S INSTITUT DE PARIS

<ロ><日><日><日><日><日><日><日><日><日><日><10</td>

On the boundary of \mathbb{X}_0

Figure: Reachable set

<ロ> < 団> < 団> < 豆> < 豆> < 豆> 三 のへで8/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion oo

Wrapping effect

Figure: Enclosing of the unit circle with boxes and parallelepipeds

Notations and definitions

- The studied function is smooth, at least C^1 .
- We denote S^n the unit sphere of dimension n
- We limit our ODEs to the ones of the form:

$$\dot{\mathbf{x}} = \gamma(\mathbf{x})$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の (?10/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Parallelepiped definition

Definition (Parallelepiped)

A parallelepiped is a subset of \mathbb{R}^n of the form

$$\langle \mathbf{y}
angle = ar{\mathbf{y}} + \mathbf{A} \cdot [-1, 1]^m = \{ar{\mathbf{y}} + \mathbf{A} \cdot \mathbf{x} \, | \, \mathbf{x} \in [-1, 1]^m\}$$

With $m \leq n$

Figure: 2D parallelepiped

< □ ▶ < @ ▶ < E ▶ < E ▶ E の (?11/45

Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Parallelepiped inclusion function

Definition (Parallelepiped inclusion function)

A parallelepipedic inclusion function is a function

$$\langle \mathbf{f} \rangle : \begin{array}{ccc} \mathbb{I}\mathbb{R}^m &
ightarrow & \mathbb{P}\mathbb{R}^n \\ [\mathbf{x}] &
ightarrow & \langle \mathbf{f} \rangle([\mathbf{x}]) \end{array}$$

such that

$$\mathbf{f}([\mathbf{x}]) \subset \langle \mathbf{f} \rangle([\mathbf{x}])$$

And $\langle \mathbf{f} \rangle ([\mathbf{x}])$ is a parallelepiped.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 12/45

Figure: Parallelepiped inclusion function

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ@_{13/45}

Approximation theorem

Theorem

Consider a smooth function **f** from \mathbb{R}^m to \mathbb{R}^n , and a box $[\mathbf{x}] \in \mathbb{IR}^m$ with center $\bar{\mathbf{x}}$. Define the linear approximation

$$\boldsymbol{\ell}(\mathbf{x}) = \mathbf{f}(\bar{\mathbf{x}}) + \frac{d\mathbf{f}}{d\mathbf{x}} \left(\bar{\mathbf{x}} \right) \cdot \left(\mathbf{x} - \bar{\mathbf{x}} \right)$$

We then have

$$\forall \mathbf{x} \in [\mathbf{x}], \|\mathbf{f}(\mathbf{x}) - \boldsymbol{\ell}(\mathbf{x})\| \leq
ho$$

where

$$\rho = \rho_{\mathbf{f}}([\mathbf{x}]) = ub\left(\left\| \left(\left[\frac{d\mathbf{f}}{d\mathbf{x}} \right]([\mathbf{x}]) - \frac{d\mathbf{f}}{d\mathbf{x}}(\bar{\mathbf{x}}) \right) \cdot ([\mathbf{x}] - \bar{\mathbf{x}}) \right\| \right)$$

Introduction	Parallelepipedic approximation	Image of the unit circle	Integration of an ODE	Image of the unit sphere	Conclusion
00000000	00000000	00000000000	000000	000000	00

Figure: Approximation theorem

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ < ♡ < ? 15/45

Corollary

Corollary

Given a function **f** from \mathbb{R}^m to \mathbb{R}^n , and a box $[\mathbf{x}] \in \mathbb{IR}^m$. We have

$$\mathbf{f}([\mathbf{x}]) \subset \boldsymbol{\ell}([\mathbf{x}]) + \rho \mathbb{U}$$

where \mathbb{U} is the unit sphere, $\rho = \rho_{\mathbf{f}}([\mathbf{x}])$ and $\ell([\mathbf{x}])$ is the linear approximation defined earlier.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 16/45

Figure: Corollary in 2D

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ@_{17/45}

Introduction Occoco

Parallelepiped inflation

Figure: Parallelepiped inflation in 2D

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ@_{18/45}

Parallelepipedic inclusion function

Given $\mathbf{f}:\mathbb{R}^m\to\mathbb{R}^n$. A parallelepipedic inclusion function is obtained as follows:

$$\langle \mathbf{f} \rangle ([\mathbf{x}]) = \bar{\mathbf{y}} + \mathbf{A} \cdot [-1, 1]^n$$

with

$$\begin{split} \bar{\mathbf{y}} &= \mathbf{f}(\bar{\mathbf{x}}) \\ \mathbf{A}_0 &= \frac{d\mathbf{f}}{d\mathbf{x}}(\bar{\mathbf{x}}) \cdot rad([\mathbf{x}]) \\ \rho &= \mathsf{ub}\left(\left\| \left(\left[\frac{d\mathbf{f}}{d\mathbf{x}} \right] ([\mathbf{x}]) - \frac{d\mathbf{f}}{d\mathbf{x}} (\bar{\mathbf{x}}) \right) \cdot ([\mathbf{x}] - \bar{\mathbf{x}}) \right\| \right) \\ \mathbf{A} &= \mathsf{Inflate}(\mathbf{A}_0, \rho) \end{split}$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の (?19/45

Box Atlas

Image of an interval by a nonlinear function

Assume we want to compute the image of [x] = [-1, 1] by the function ψ_0 defined by

$$\forall x \in [x], \psi_0(x) = \begin{pmatrix} \sin(\frac{\pi x}{4}) \\ \cos(\frac{\pi x}{4}) \end{pmatrix}$$

The Jacobian matrix is

$$\frac{d\psi_0}{dx} = \frac{\pi}{4} \left(\begin{array}{c} \cos(\frac{\pi x}{4}) \\ -\sin(\frac{\pi x}{4}) \end{array} \right)$$

< □ > < @ > < E > < E > E の Q ℃ 21/45

Subdivisions	ϵ	ρ
1	2	0.60
4	0.5	0.042
10	0.2	6.4e-3
20	0.1	1.6e-3

Figure: Approximations of $\psi_0([-1, 1])$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 22/45

Parallelepipedic inclusion of the circle

Let us define $s_1 = e^{\mathbf{k}\frac{\pi}{2}}$ the rotation of $\frac{\pi}{2}$ with respect to **k**. The parallelepipedic inclusion of the circle can be obtained by the symmetries :

$$\Sigma = \{1, extsf{s}_1, extsf{s}_1^2, extsf{s}_1^{-1}\}$$

The unit circle then corresponds to:

$$\mathcal{S}^1 = \bigcup_{\sigma \in \Sigma} \sigma \circ \psi_0([-1, 1])$$

<□▶ < @▶ < 注▶ < 注▶ 注 の < ?23/45

Figure: Parallelepipedic inclusion of the unit circle S^1

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 24/45

Image of the unit circle by a nonlinear function

Consider a function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$. We can then write the image of the unit circle \mathcal{S}^1 by \mathbf{f} as :

$$\mathbf{f}(\mathcal{S}^1) = \bigcup_i \langle \mathbf{g}_i \rangle([-1,1])$$

Where $\langle \mathbf{g}_i \rangle$ is a parallelepiped inclusion function of :

$$\mathbf{g}_i = \mathbf{f} \circ \sigma_i \circ \psi_0$$

For graphical purposes, we consider the Henon map defined by :

$$\mathbf{f}(\mathbf{x}) = \left(\begin{array}{c} x_2 + 1 - a x_1^2 \\ b x_1 \end{array}
ight)$$
, $a = 1.4$, $b = 0.3$

Figure: Image of the unit circle by the Henon map

< □ ▶ < @ ▶ < E ▶ < E ▶ E の (°26/45

Introduction Parallelepipedic approximation Image of the unit circle ocococo ococo o

Figure: Image of the unit circle by the Henon map

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 27/45

Comparison

Figure: Natural, Centered [3] [4] and Parallelepipedic inclusion for 20 subdivisions

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @_{28/45}

Figure: Area of the approximation depending on the number of subdivisions

臣

ൗ ∝ ⇔_{29/45}

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Convergence of the parallelepiped inclusion

Let us denote by A the area of the approximation and ϵ the width of a subdivision. If we note k the number of subdivisions of [-1, 1], $\epsilon = \frac{2}{k}$. If A converges in ϵ^n then

$$rac{A}{\epsilon^n} \xrightarrow[\epsilon
ightarrow 0]{} c, c \in \mathbb{R}$$

Then

$$\log(A) \xrightarrow[\epsilon \to 0]{} \log(c) + n \cdot \log(\epsilon)$$

FNSTZ S INSTITUT

<□▶ < @▶ < 注▶ < 注▶ 注 の へ ♡ 30/45

Figure: Convergence of the natural, centered and parallelepedic inclusion

The parallelepiped inclusion seems to converge in ϵ^2

< □ > < @ > < E > < E > E の Q ℃ 31/45

Variationnal equation

Consider the system

$$\dot{\mathbf{x}}=\gamma(\mathbf{x})\ \mathbf{x}(\mathbf{0})=\mathbf{x}_{\mathbf{0}}\in\mathcal{S}^{1}$$

The solution of this ODE is the flow function $\phi_{\mathbf{x}_0}(t)$. If we denote $\mathbf{A}(\mathbf{x}_0, t) = \frac{\partial \Phi_{\mathbf{x}_0}}{\partial \mathbf{x}_0}(t)$. We have the variational equation

$$\dot{\mathbf{A}} = \frac{d\gamma}{d\mathbf{x}}(\mathbf{x}) \cdot \mathbf{A}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで32/45

Image of the unit circle by an ODE

Integrating the ODE :

$$\begin{cases} \dot{\mathbf{x}} = \gamma(\mathbf{x}) \\ \dot{\mathbf{A}} = \frac{\partial \gamma}{\partial \mathbf{x}}(\mathbf{x}) \cdot \mathbf{A} \\ \mathbf{x}(0) = \mathbf{x}_0 \in \mathcal{S}^1 \end{cases}$$

over a time t for any $\mathbf{x}_0 \in \mathcal{S}^1$ will output both $\phi_{\mathbf{x}_0}(t)$ and $\frac{\partial \Phi_{\mathbf{x}_0}}{\partial \mathbf{x}}(t)$.

Integration of the pendulum with CAPD

Consider the equation of the pendulum:

$$\dot{\mathbf{x}} = \gamma \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} x_2 \\ -5 \cdot \sin(x_1 - 0.5) - 0.5x_2 \end{array}\right)$$

We then have :

$$\frac{d\gamma}{d\mathbf{x}}(\mathbf{x}) = \left(\begin{array}{cc} 0 & 1\\ -5 \cdot \cos(x_1 - 0.5) & -0.5 \end{array}\right)$$

We integrate the ODE with CAPD [5] and use the parallelepipedic inclusion.

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Figure: Integration of the pendulum for 5sec with CAPD alone for 5 subdivisions

na@35/45

・ロト ・四ト ・ヨト ・ヨト

ENSTZ SPOLYTECHNIQUE

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 36/45

Figure: Integration of the pendulum for 5sec with CAPD an parallelepipeds for 5 subdivisions

Introduction	Parallelepipedic approximation	Image of the unit circle	Integration of an ODE	Image of the unit sphere	Conclusion
00000000	000000000	00000000000	000000	000000	00

Comparison

Figure: Area of the boundary after 5sec of integration

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Parallelepipedic approximation Image of the unit circle occoco occo occoco occo occo

3D parallelepiped inflation

Figure: 3D parallelepiped inflation

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @_{38/45}

Lorenz system

The Lorenz system is defined by :

$$\dot{\mathbf{x}} = \gamma \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \sigma(x_2 - x_1) \\ \rho x_1 - x_2 - x_1 x_3 \\ x_1 x_2 - \beta x_3 \end{pmatrix}, \ \sigma = 10, \rho = 28, \beta = \frac{8}{3}$$

We then have

$$\frac{d\gamma}{d\mathbf{x}}(\mathbf{x}) = \begin{pmatrix} -\sigma & \sigma & 0\\ \rho & -1 & -x_1\\ x_2 & x_1 & -\beta \end{pmatrix}$$

We integrate the ODE with CAPD and use the parallelepipedic inclusion.

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q (*39/45)

Figure: Lorenz system after 0.1s of integration with capd alone ($\epsilon = 0.1$)

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (P40/45)

Figure: Lorenz system after 0.1s of integration with CAPD and parallelepiped inclusion ($\varepsilon=0.1)$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の (?41/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Preservation of the topology

Figure: Inside of the image set

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @_{42/45}

Comparison

Figure: Convergence of both methods

The parallelepiped inclusion seems to converge in ϵ

≣ ୬९୯_{43/45}

ENSTE S POLYTECHNIQUE

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Parallelepipedic inclusion working in \mathbb{R}^n
- Seems to converge in ϵ^2 , to prove
- \bullet Studying the ODE in the form $\dot{\mathbf{x}}=\gamma(\mathbf{x},\mathbf{u})$ for Reachability Analysis
- Projection of the enclosure

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = つへで44/45</p>

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Thank you for listening

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ@44/45

Bibliography

[1] LEW *T.*, BONNALI *R.*, PAVONE *M.*, Exact Characterization of the Convex Hulls of Reachable Sets, 62nd IEEE Conference on Decision and Control (CDC 2023), Dec 2023, Singapour, Singapore.

[2] IGNAZI A., Manifold decomposition for interval analysis, SWIM 2023

[3] MOORE *R.E.*, Methods and Applications of Interval Analysis, 1979, SIAM, Philadelphia.

[4] ROHOU S., DESROCHERS B., LE BARS F., The Codac Library: A Catalog of Domains and Contractors, Acta Cybernetica - Special Issue of SWIM 2022, 2024.

[5] KAPELA R., MROZEK M., WILCZAK D., ZGLICZYNSKI P., CAPD::DynSys: A flexible C++ toolbox for rigorous numerical analysis of dynamical systems, Communications in Noplinear Science and Numerical Simulation, 2021.