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Motivation

Figure: Autonomous robot Helios
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Objective

Figure: Thesis’ objective
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Flow function

Definition (Flow function)
Consider a dynamical system

ẋ = f(x(t),u(t)), x(0) ∈ X0,u ∈ U

This equation admits a unique solution called flow function, noted
ϕ : X0 ×U × R → Rn, that satisfies:

∀(x0,u(.), t) ∈ X0 ×U × R, ϕ(x0,u(.), t) = x(t)
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Reachable set

Definition (Reachable set at a point in time)
Consider a dynamical system

ẋ = f(x(t),u(t)), x(0) ∈ X0,u ∈ U

The reachable set at time tr noted R(tr ) can then be defined by :

R(tr ) = {x ∈ Rn|∃x0 ∈ X0, ∃u(.) ∈ U , ϕ(x0,u(.), tr ) = x}
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Reachability Analysis

From the litterature [1], finding the reachable set at time t from
an initial state x0 comes down to integrating the ODE :

ODEw(0) :


ẋ(t) = f(x(t)) + (n∂U)−1(q(t))
q̇(t) = −Projq(t)(∇f(x(t))T q(t)
(x(0),q(0)) = (x0, n∂U(u(0)))

On the boundary of X0
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Figure: Reachable set
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Wrapping effect

Figure: Enclosing of the unit circle with boxes and parallelepipeds
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Notations and definitions

The studied function is smooth, at least C1.
We denote Sn the unit sphere of dimension n
We limit our ODEs to the ones of the form:

ẋ = γ(x)
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Parallelepiped definition

Definition (Parallelepiped)
A parallelepiped is a subset of Rn of the form

⟨y⟩ = ȳ + A · [−1, 1]m = {ȳ + A · x | x ∈ [−1, 1]m}

With m ≤ n

Figure: 2D parallelepiped
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Parallelepiped inclusion function

Definition (Parallelepiped inclusion function)
A parallelepipedic inclusion function is a function

⟨f⟩ :
IRm → PRn

[x] → ⟨f⟩([x])

such that

f([x]) ⊂ ⟨f⟩([x])

And ⟨f⟩([x]) is a parallelepiped.
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Figure: Parallelepiped inclusion function
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Approximation theorem

Theorem
Consider a smooth function f from Rm to Rn, and a box
[x] ∈ IRm with center x̄ . Define the linear approximation

ℓ(x) = f(x̄) + df
dx (x̄) · (x − x̄)

We then have
∀x ∈ [x], ∥f(x)− ℓ(x)∥ ≤ ρ

where

ρ = ρf([x])=ub
(∥∥∥∥([

df
dx

]
([x])− df

dx (x̄)
)
· ([x]− x̄)

∥∥∥∥)
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Figure: Approximation theorem
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Corollary

Corollary
Given a function f from Rm to Rn, and a box [x] ∈ IRm. We have

f([x]) ⊂ ℓ([x]) + ρU

where U is the unit sphere, ρ = ρf([x]) and ℓ([x]) is the linear
approximation defined earlier.
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Figure: Corollary in 2D
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Parallelepiped inflation

Figure: Parallelepiped inflation in 2D
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Parallelepipedic inclusion function

Given f : Rm → Rn . A parallelepipedic inclusion function is
obtained as follows:

⟨f⟩([x]) = ȳ + A · [−1, 1]n

with

ȳ = f(x̄)
A0 = df

dx (x̄) · rad([x])
ρ = ub

(∥∥([ df
dx
]
([x])− df

dx (x̄)
)
· ([x]− x̄)

∥∥)
A = Inflate(A0, ρ)
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Box Atlas

Figure: Box atlas [2]
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Image of an interval by a nonlinear function

Assume we want to compute the image of [x ] = [−1, 1] by the
function ψ0 defined by

∀x ∈ [x ],ψ0(x) =
(

sin(πx
4 )

cos(πx
4 )

)
The Jacobian matrix is

dψ0
dx =

π

4

(
cos(πx

4 )
−sin(πx

4 )

)
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Subdivisions ϵ ρ

1 2 0.60
4 0.5 0.042
10 0.2 6.4e-3
20 0.1 1.6e-3

Figure: Approximations of ψ0([−1, 1])



23/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Parallelepipedic inclusion of the circle

Let us define s1 = ek π
2 the rotation of π

2 with respect to k. The
parallelepipedic inclusion of the circle can be obtained by the
symmetries :

Σ = {1, s1, s2
1 , s−1

1 }

The unit circle then corresponds to:

S1 =
⋃

σ∈Σ

σ ◦ ψ0([−1, 1])
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Figure: Parallelepipedic inclusion of the unit circle S1



25/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Image of the unit circle by a nonlinear function

Consider a function f : R2 → R2. We can then write the image of
the unit circle S1 by f as :

f(S1) =
⋃
i
⟨gi ⟩([−1, 1])

Where ⟨gi ⟩ is a parallelepiped inclusion function of :

gi = f ◦ σi ◦ ψ0

For graphical purposes, we consider the Henon map defined by :

f(x) =
(

x2 + 1 − ax2
1

bx1

)
, a = 1.4, b = 0.3
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Figure: Image of the unit circle by the Henon map
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Figure: Image of the unit circle by the Henon map
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Comparison

Figure: Natural, Centered [3] [4] and Parallelepipedic inclusion for 20
subdivisions
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Figure: Area of the approximation depending on the number of
subdivisions
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Convergence of the parallelepiped inclusion

Let us denote by A the area of the approximation and ϵ the width
of a subdivision. If we note k the number of subdivsions of [−1, 1],
ϵ = 2

k .
If A converges in ϵn then

A
ϵn −−→

ϵ→0
c, c ∈ R

Then
log(A) −−→

ϵ→0
log(c) + n · log(ϵ)
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Figure: Convergence of the natural, centered and parallelepedic inclusion

The parallelepiped inclusion seems to converge in ϵ2
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Variationnal equation

Consider the system

ẋ = γ(x)
x(0) = x0 ∈ S1

The solution of this ODE is the flow function ϕx0(t). If we denote
A(x0, t) =

∂Φx0
∂x0

(t) . We have the variational equation

Ȧ =
dγ

dx (x) · A
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Image of the unit circle by an ODE

Integrating the ODE : 
ẋ = γ(x)

Ȧ = ∂γ
∂x (x) · A

x(0) = x0 ∈ S1

over a time t for any x0 ∈ S1 will output both ϕx0(t) and ∂Φx0
∂x (t).



34/45

Introduction Parallelepipedic approximation Image of the unit circle Integration of an ODE Image of the unit sphere Conclusion

Integration of the pendulum with CAPD

Consider the equation of the pendulum:

ẋ = γ

(
x1
x2

)
=

(
x2

−5 · sin(x1 − 0.5)− 0.5x2

)
We then have :

dγ

dx (x) =
(

0 1
−5 · cos(x1 − 0.5) −0.5

)
We integrate the ODE with CAPD [5] and use the parallelepipedic
inclusion.
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Figure: Integration of the pendulum for 5sec with CAPD alone for 5
subdivisions
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Figure: Integration of the pendulum for 5sec with CAPD an
parallelepipeds for 5 subdivisions
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Comparison

Figure: Area of the boundary after 5sec of integration
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3D parallelepiped inflation

Figure: 3D parallelepiped inflation
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Lorenz system

The Lorenz system is defined by :

ẋ = γ

 x1
x2
x3

 =

 σ(x2 − x1)
ρx1 − x2 − x1x3

x1x2 − βx3

 , σ = 10, ρ = 28, β =
8
3

We then have

dγ

dx (x) =

 −σ σ 0
ρ −1 −x1
x2 x1 −β


We integrate the ODE with CAPD and use the parallelepipedic
inclusion.
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Figure: Lorenz system after 0.1s of integration with capd alone (ϵ = 0.1)
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Figure: Lorenz system after 0.1s of integration with CAPD and
parallelepiped inclusion (ϵ = 0.1)
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Preservation of the topology

Figure: Inside of the image set
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Comparison

Figure: Convergence of both methods

The parallelepiped inclusion seems to converge in ϵ2
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Conclusion

Parallelepipedic inclusion working in Rn

Seems to converge in ϵ2, to prove
Studying the ODE in the form ẋ = γ(x,u) for Reachability
Analysis
Projection of the enclosure
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