

Adaptative parallelepipedic approximation of the image of a set by a nonlinear function

<u>Maël Godard</u>, Luc Jaulin, Damien Massé September 26, 2025

Introduction

Adaptative parallelepipedic approximation

Illustration

Additional example

Conclusion

Introduction

- Workspace of a robotic arm
- Observation (distance to landmarks)
- Reachability Analysis (not covered here)

- Workspace of a robotic arm
- Observation (distance to landmarks)
- Reachability Analysis (not covered here)

- Workspace of a robotic arm
- Observation (distance to landmarks)
- Reachability Analysis (not covered here)

- Workspace of a robotic arm
- Observation (distance to landmarks)
- Reachability Analysis (not covered here)

- Workspace of a robotic arm
- Observation (distance to landmarks)
- Reachability Analysis (not covered here)

- Boxes
- Zonotopes
- Ellipsoids
-

- Boxes
- Zonotopes
- Ellipsoids
-

- Boxes
- Zonotopes
- Ellipsoids

. . . .

- Boxes
- Zonotopes
- Ellipsoids
-

Definition (Parallelepiped)

A parallelepiped is a subset of \mathbb{R}^n of the form

$$\langle \mathbf{y} \rangle = \bar{\mathbf{y}} + \mathbf{A} \cdot [-1, 1]^m = \{ \bar{\mathbf{y}} + \mathbf{A} \cdot \mathbf{x} \mid \mathbf{x} \in [-1, 1]^m \}$$

With $m \le n$

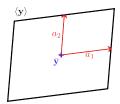


Figure 1: 2D parallelepiped

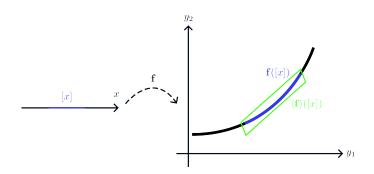


Figure 2: Parallelepiped inclusion function

PEIBOS stands for Parallelepipedic Enclosure of the Image of the BOundary of a Set.

https://godardma.github.io/subpages/libs/parallelepiped.html

¹Maël Godard, Luc Jaulin, Damien Massé, Inner and outer approximation of the image of a set by a nonlinear function, *International Journal of Approximate Reasoning*, Volume 187, 2025.

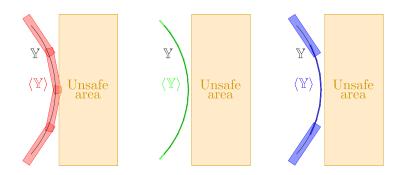


Figure 3: Bad, good and adaptative approximations

Adaptative parallelepipedic approximation

Definition (Constraint)

A constraint c is a boolean function defined by :

Definition

A constraint is verified on a set if it is verified on every point of it

$$egin{array}{cccc} c: & \mathcal{P}\left(\mathbb{R}^n
ight) &
ightarrow & \left\{0,1
ight\} & & & & \\ & \mathbb{Y} & \mapsto & \left\{egin{array}{cccc} 1 & ext{if } orall \mathbf{y} \in \mathbb{Y}, \ c(\mathbf{y}) = \mathbb{X}, \ 0 & ext{Otherwise} \end{array}
ight.$$

Definition (Constraint)

A constraint c is a boolean function defined by :

Definition

A constraint is verified on a set if it is verified on every point of it

Definition

A contractor \mathcal{C}_c associated to a constraint c is a function $\mathcal{C}_c: \mathbb{IR}^n \to \mathbb{IR}^n$ contracting a box with respect to the constraint c. It satisfies

- $\forall [\mathbf{x}] \in \mathbb{IR}^n$, $\mathcal{C}_c([\mathbf{x}]) \subseteq [\mathbf{x}]$ (Contractance)
- $\forall \mathbf{x} \in [\mathbf{x}], \ c(\mathbf{x}) \implies \mathbf{x} \in \mathcal{C}_c([\mathbf{x}])$ (Consistency)

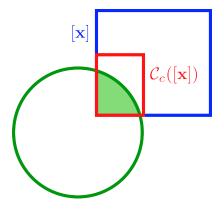


Figure 4: Contraction

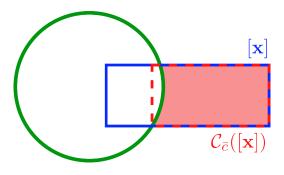


Figure 5: Contractor on the complementary

Inputs

- A function $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$, m < n
- A box $[\mathbf{x}_0] \in \mathbb{IR}^m$
- A contractor $\mathcal{C}_{\bar{c}}: \mathbb{R}^n \to \mathbb{R}^n$ associated to the complementary of the constraint $c: \mathbb{R}^n \to \{0,1\}$
- A resolution $\epsilon \in \mathbb{R}^+$ with a lower limit $\epsilon_{\mathit{lim}} \in \mathbb{R}^+$
- A list of Parallelepipeds \mathcal{L}_P .

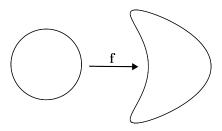
Algorithm 1 Adaptative parallelepiped enclosure

```
Output the list \mathcal{L}_P completed in place
Notation Ad-PEIBOS_step (\mathbf{f}, [\mathbf{x}_0], C_{\bar{c}}, \epsilon, \epsilon_{lim}, \mathcal{L}_p)
if \epsilon < \epsilon_{lim} then
        Raise an alarm
else
        Split [\mathbf{x}_0] in a list of boxes \mathcal{L}_{\mathbf{x}} of diameter \epsilon or less
        for [x] in \mathcal{L}_x
               Compute \langle y \rangle the parallelepiped enclosing f([x])
               if C_{\bar{c}}(\langle \mathbf{y} \rangle) = \emptyset // The constraint c is satisfied on \langle \mathbf{y} \rangle
                      Store \langle \mathbf{v} \rangle in \mathcal{L}_n
               else
                      Ad-PEIBOS_step(\mathbf{f}, [\mathbf{x}], C_{\bar{c}}, \frac{\epsilon}{2}, \epsilon_{lim}, \mathcal{L}_p)
```

Illustration

For graphical purposes, we consider the Henon map defined by :

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_2 + 1 - ax_1^2 \\ bx_1 \end{pmatrix}$$
, $a = 1.4$, $b = 0.3$



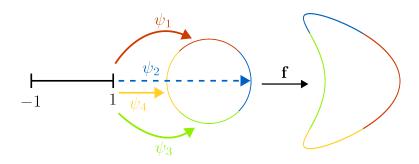


Figure 6: Atlas of the unit circle

²Arthur Ignazi, Remy Guyonneau, Sébastien Lagrange, Sébastien Lahaye, Box atlas: An interval version of atlas, *International Journal of Approximate Reasoning*, Volume 183, 2025.

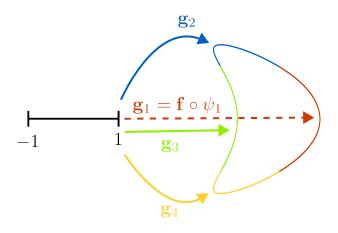
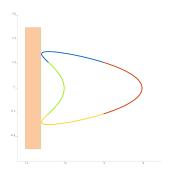
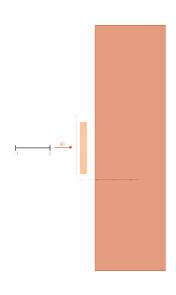


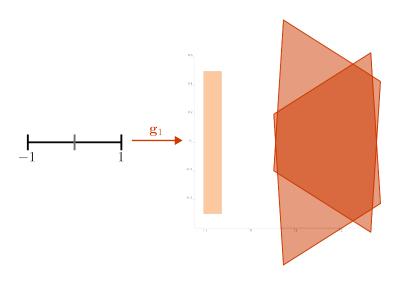
Figure 7: g_i functions

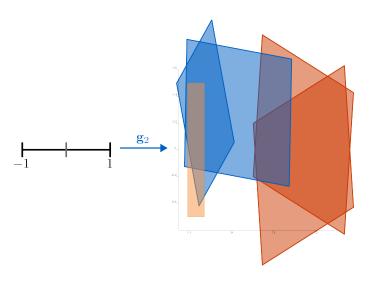
The constraint is

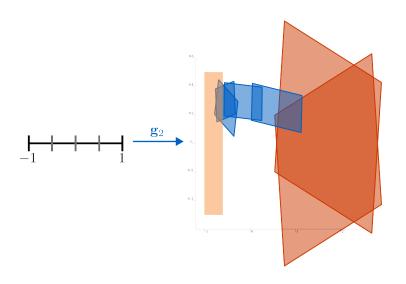
$$\begin{array}{cccc} c: & \mathbb{R}^2 & \rightarrow & \{0,1\} \\ & \mathbf{y} & \mapsto & y_2 < -0.6 \end{array}$$

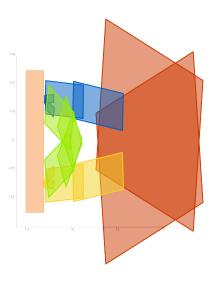












We use the **small resolution** everywhere. Computation time goes from **3ms** to **6ms**.

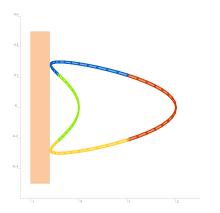


Figure 8: Small resolution enclosure of the image set

Additional example

The position of the effector is defined by

$$\mathbf{z} = \mathbf{f} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \cos(\alpha_1) \cdot (I_1 + I_2 \cos(\alpha_2) + I_3 \cos(\alpha_2 + \alpha_3)) \\ \sin(\alpha_1) \cdot (I_1 + I_2 \cos(\alpha_2) + I_3 \cos(\alpha_2 + \alpha_3)) \\ I_2 \sin(\alpha_2) + I_3 \sin(\alpha_2 + \alpha_3) \end{pmatrix}$$

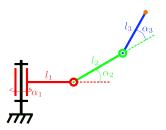


Figure 9: Robotic arm

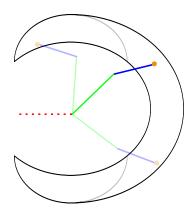


Figure 10: 2D workspace

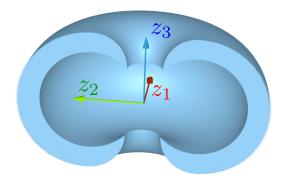


Figure 11: Revolution of the workspace

$$\left\{ \begin{array}{l} c_1(\mathbf{z}) = \left(\sqrt{z_2^2 + z_3^2} < 1.2\right) & \text{(radius of the cylinder)} \\ c_2(\mathbf{z}) = (z_1 < 1.055) & \text{(depth of the cylinder)} \end{array} \right.$$

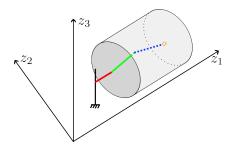


Figure 12: Arm in a cylinder

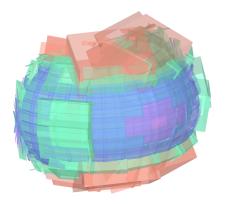


Figure 13: Adaptative enclosure

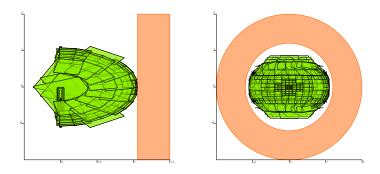


Figure 14: Projections in the (z_1, z_2) and (z_2, z_3) planes

Once again we use the **fine resolution** everywhere. We go up from **0.1s** (adaptative method) to **4s**.

Figure 15: Fine enclosure

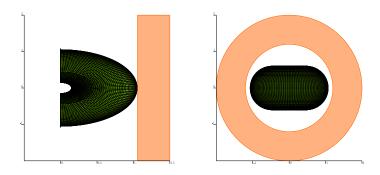


Figure 16: Projections in the (z_1, z_2) and (z_2, z_3) planes

Conclusion

- Adaptative method for parallelepiped approximation
- Constraint approach to refine the approximation where needed
- 2D and 3D examples, works in n-D
- Applicable to dynamical systems (ODE)

- Adaptative method for parallelepiped approximation
- Constraint approach to refine the approximation where needed
- 2D and 3D examples, works in n-D
- Applicable to dynamical systems (ODE)

- Adaptative method for parallelepiped approximation
- Constraint approach to refine the approximation where needed
- 2D and 3D examples, works in n-D
- Applicable to dynamical systems (ODE)

- Adaptative method for parallelepiped approximation
- Constraint approach to refine the approximation where needed
- 2D and 3D examples, works in n-D
- Applicable to dynamical systems (ODE)

- Application to reachability
- PEIBOS joining Codac
- · · · Ad-PEIBOS joining too?

... and perspectives

- Application to reachability
- PEIBOS joining Codac
- · · · Ad-PEIBOS joining too?

... and perspectives

- Application to reachability
- PEIBOS joining Codac
- · · · Ad-PEIBOS joining too?

Thank you for your attention