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Robotic arm

Figure: 2D Robotic arm
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Position of the effector

Le us denote by y = (y1, )7 the state of the arm. The position
of the effector is defined by :

~( hcos(y1) + hcos(y1 + y2)
fly) = < hsin(y1) + hsin(y1 + y2) >

For this study y € Yo = [—g §]2 and dYj is the boundary of Yj.
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Wrapping effect

Figure: Enclosing of the unit circle with boxes and parallelepipeds
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Principle

R™

x € R™

* [x]

Figure: Parallelepipedic inclusion
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Parallelepipedic inclusion function

Given f : R™ — IR" . A parallelepipedic inclusion function is
obtained as follows:

O(x]) = y+A-[-11]"

with
y = f(x)
Ay = & (%) - rad([x])
p= ub (| ([L](X)— &£ x)(1x]-%)])
A = Inflate(Ao, p)

Note : This inclusion function converges with an order 1 ( order 0
for natural extension and centered inclusion functlonsENS.I.a —
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Atlas of the initial set [1]

Let us define s; = X2 the rotation of % with respect to k. The
parallelepipedic inclusion of the initial box can be obtained by the
symmetries :

> = {1,51,512,51_1}
By using the function ¥ : [—1,1] — Yo

Po(x) = ( X_% )

The boundary of the initial set then corresponds to:

Yo = |J oo go([-1,1)
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Figure: Construction of the initial box
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Image of the initial set

Consider a function f : R? — IR%. We can then write the image of
the boundary of the initial set Yg by f as :

aYO U g:
With :

gi =fooioyy
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Image of the atlas

gi g;

Figure: Image of Yo
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Figure: Image of Yo with parallelepipeds [2]
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Workspace computation
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Singularity

Figure: Singularity in the 2D arm
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Singularity detection

Consider a function f : R™ — R" and its Jacobian
Jf : R™ — IR"™™. The function f has a singularity at y € R™ if

det (Jr (y)) =0

For the robotic arm, we find that
—nr » _
e [ (n( 7)) =0
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Singularity management

To handle the singularity, we add an transformation function
l'bs : [—1, 1] — Yo

We then define

gs=fo Ps
Which gives us a total of 5 functions to study : go, 81,82, 83, 8s
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Figure: Atlas (left) and Workspace (right) with singularity
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Polygon view [3]

Figure: Polygon (yellow) with holes (green)
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Convex partitions

Figure: Convex decomposition of the holes

ENST2 @




Workspace computation
000000000

Delaunay triangulation

Figure: Delaunay triangulation
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Outside triangulation

Figure: Outside triangulation
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Suppressing fake boundaries

Figure: Inner (green) and outer (green + yellow) approximations
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Additional use case

> 3

Figure: Robot sweeping an area
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Modelization

Figure: Modelization
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Sweeped area with fakes

Figure: Sweeped area
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Inner and outer approximation

Figure: Fake boundaries removed
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Conclusion

@ Inner and outer approximation of the workspace
@ Method based on parallelepipeds and Delaunay triangulation

@ To be tested in higher dimensions
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Thank you for listening
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Convergence
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Figure: Convergences for the Henon map and the pendulum
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Convergence speed
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Figure: Convergence speed for the Lorenz system
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Computation times
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] Dimension \ Example \ Computation time
Henon map 0.01s
D Pendulum (25 steps) 1.74 s
Pendulum (last step) 0.21s
Robotic arm 0.01s
Lorenz (0.05 s) 2.72s
Lorenz (0.1 s) 3.92s
3D Battery model (15 steps) 10 min
Battery model (last step) 78 s
Robotic arm 190 s
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QR decomposition
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Figure: Parallelepiped going “to infinity”
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Figure: QR decomposition

W PolTEdumaue
DA DIH



	Introduction
	Parallelepipedic approximation
	Workspace computation
	Additional use case
	Conclusion
	Appendices

