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Robotic arm

Figure: 2D Robotic arm
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Position of the effector

Le us denote by y = (y1, y2)T the state of the arm. The position
of the effector is defined by :

f (y) =
(

l1 cos(y1) + l2 cos(y1 + y2)
l1 sin(y1) + l2 sin(y1 + y2)

)
For this study y ∈ Y0 =

[
−π

2 ,
π
2
]2 and ∂Y0 is the boundary of Y0.
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Wrapping effect

Figure: Enclosing of the unit circle with boxes and parallelepipeds
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Principle

Figure: Parallelepipedic inclusion
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Parallelepipedic inclusion function

Given f : Rm → Rn . A parallelepipedic inclusion function is
obtained as follows:

⟨f⟩([x]) = ȳ + A · [−1, 1]n

with

ȳ = f(x̄)
A0 = df

dx (x̄) · rad([x])
ρ = ub

(∥∥([ df
dx
]
([x])− df

dx (x̄)
)
· ([x]− x̄)

∥∥)
A = Inflate(A0, ρ)

Note : This inclusion function converges with an order 1 ( order 0
for natural extension and centered inclusion functions)
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Atlas of the initial set [1]

Let us define s1 = ek π
2 the rotation of π

2 with respect to k. The
parallelepipedic inclusion of the initial box can be obtained by the
symmetries :

Σ = {1, s1, s2
1 , s−1

1 }

By using the function ψ0 : [−1, 1] → Y0

ψ0(x) =
(

−π
2

x · π
2

)
The boundary of the initial set then corresponds to:

∂Y0 =
⋃

σ∈Σ

σ ◦ ψ0([−1, 1])
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Figure: Construction of the initial box
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Image of the initial set

Consider a function f : R2 → R2. We can then write the image of
the boundary of the initial set Y0 by f as :

f(∂Y0) =
⋃
i

gi ([−1, 1])

With :

gi = f ◦ σi ◦ ψ0



11/32

Introduction Parallelepipedic approximation Workspace computation Additional use case Conclusion Appendices

Image of the atlas

Figure: Image of Y0
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Figure: Image of Y0 with parallelepipeds [2]
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Singularity

Figure: Singularity in the 2D arm
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Singularity detection

Consider a function f : Rm → Rn and its Jacobian
Jf : Rm → Rn×m. The function f has a singularity at y ∈ Rm if

det (Jf (y)) = 0

For the robotic arm, we find that

∀y1 ∈
[
−π

2 ,
π

2

]
, det

(
Jf

(
y1
0

))
= 0
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Singularity management

To handle the singularity, we add an transformation function
ψs : [−1, 1] → Y0

ψs (x) =
(

−x · π
2

0

)
We then define

gs = f ◦ ψs

Which gives us a total of 5 functions to study : g0, g1, g2, g3, gs
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Figure: Atlas (left) and Workspace (right) with singularity
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Polygon view [3]

Figure: Polygon (yellow) with holes (green)
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Convex partitions

Figure: Convex decomposition of the holes
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Delaunay triangulation

Figure: Delaunay triangulation
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Outside triangulation

Figure: Outside triangulation
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Suppressing fake boundaries

Figure: Inner (green) and outer (green + yellow) approximations
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Additional use case

Figure: Robot sweeping an area
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Modelization

Figure: Modelization
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Sweeped area with fakes

Figure: Sweeped area
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Inner and outer approximation

Figure: Fake boundaries removed
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Conclusion

Inner and outer approximation of the workspace
Method based on parallelepipeds and Delaunay triangulation
To be tested in higher dimensions
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Convergence

Figure: Convergences for the Henon map and the pendulum
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Convergence speed

Figure: Convergence speed for the Lorenz system
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Computation times

Dimension Example Computation time

2D

Henon map 0.01 s
Pendulum (25 steps) 1.74 s
Pendulum (last step) 0.21 s

Robotic arm 0.01s

3D

Lorenz (0.05 s) 2.72 s
Lorenz (0.1 s) 3.92 s

Battery model (15 steps) 10 min
Battery model (last step) 78 s

Robotic arm 1.90 s
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QR decomposition

Figure: Parallelepiped going “to infinity”
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Figure: QR decomposition
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