Inner and outer approximation of the workspace of a robotic arm

Maël Godard¹ Luc Jaulin¹ Damien Massé²

¹Lab-STICC, ROBEX Team, ENSTA

²Lab-STICC, ROBEX Team, UBO

June 29, 2025

Introduction

- Introduction
- 2 Parallelepipedic approximation
- Workspace computation
- 4 Additional use case
- Conclusion

Robotic arm

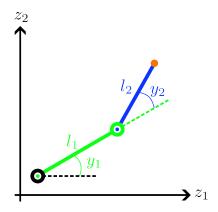


Figure: 2D Robotic arm

Position of the effector

Le us denote by $\mathbf{y} = (y_1, y_2)^T$ the state of the arm. The position of the effector is defined by :

$$\mathbf{f}(\mathbf{y}) = \begin{pmatrix} l_1 \cos(y_1) + l_2 \cos(y_1 + y_2) \\ l_1 \sin(y_1) + l_2 \sin(y_1 + y_2) \end{pmatrix}$$

For this study $\mathbf{y} \in \mathbb{Y}_0 = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^2$ and $\partial \mathbb{Y}_0$ is the boundary of \mathbb{Y}_0 .

Wrapping effect

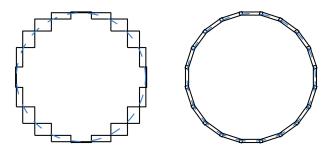


Figure: Enclosing of the unit circle with boxes and parallelepipeds

Principle

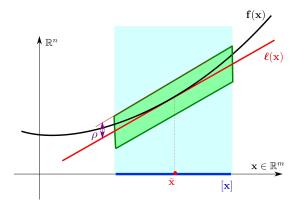


Figure: Parallelepipedic inclusion

Parallelepipedic inclusion function

Given $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$. A parallelepipedic inclusion function is obtained as follows:

$$\langle \mathbf{f} \rangle ([\mathbf{x}]) = \bar{\mathbf{y}} + \mathbf{A} \cdot [-1, 1]^n$$

with

$$\begin{array}{lll} \bar{\mathbf{y}} & = & \mathbf{f}(\bar{\mathbf{x}}) \\ \mathbf{A}_0 & = & \frac{d\mathbf{f}}{d\mathbf{x}}(\bar{\mathbf{x}}) \cdot rad([\mathbf{x}]) \\ \rho & = & \mathsf{ub}\left(\left\|\left(\left[\frac{d\mathbf{f}}{d\mathbf{x}}\right]\left([\mathbf{x}]\right) - \frac{d\mathbf{f}}{d\mathbf{x}}\left(\bar{\mathbf{x}}\right)\right) \cdot \left([\mathbf{x}] - \bar{\mathbf{x}}\right)\right\|\right) \\ \mathbf{A} & = & \mathsf{Inflate}(\mathbf{A}_0, \rho) \end{array}$$

Note: This inclusion function converges with an order 1 (order 0 for natural extension and centered inclusion functions)

Atlas of the initial set [1]

Let us define $s_1=e^{\mathbf{k}\frac{\pi}{2}}$ the rotation of $\frac{\pi}{2}$ with respect to \mathbf{k} . The parallelepipedic inclusion of the initial box can be obtained by the symmetries :

$$\Sigma = \{1, s_1, s_1^2, s_1^{-1}\}\$$

By using the function $\psi_0:[-1,1] o \mathbb{Y}_0$

$$\psi_0(x) = \left(\begin{array}{c} -\frac{\pi}{2} \\ x \cdot \frac{\pi}{2} \end{array}\right)$$

The boundary of the initial set then corresponds to:

$$\partial \mathbb{Y}_0 = \bigcup_{\sigma \in \Sigma} \sigma \circ \psi_0([-1,1])$$

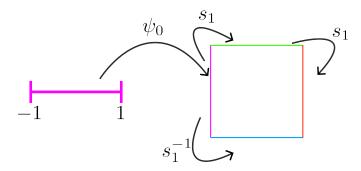


Figure: Construction of the initial box

Image of the initial set

Consider a function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$. We can then write the image of the boundary of the initial set \mathbb{Y}_0 by \mathbf{f} as :

$$\mathbf{f}(\partial \mathbb{Y}_0) = \bigcup_i \mathbf{g}_i([-1,1])$$

With:

$$\mathbf{g}_i = \mathbf{f} \circ \sigma_i \circ \psi_0$$

Image of the atlas



Figure: Image of Y_0

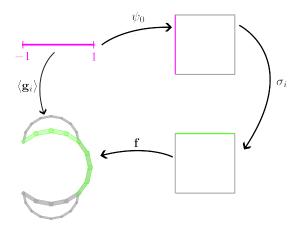


Figure: Image of Y_0 with parallelepipeds [2]

Singularity

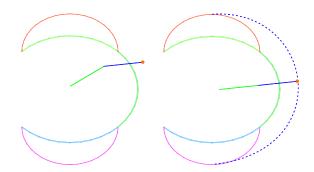


Figure: Singularity in the 2D arm

Singularity detection

Consider a function $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$ and its Jacobian $\mathbf{J}_{\mathbf{f}}: \mathbb{R}^m \to \mathbb{R}^{n \times m}$. The function \mathbf{f} has a singularity at $\mathbf{y} \in \mathbb{R}^m$ if

$$\det\left(\boldsymbol{J_{f}}\left(\boldsymbol{y}\right)\right)=0$$

For the robotic arm, we find that

$$\forall y_1 \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], \det \left(\mathbf{J_f} \left(\begin{array}{c} y_1 \\ 0 \end{array}\right)\right) = 0$$

Singularity management

To handle the singularity, we add an transformation function $\psi_s:[-1,1] o \mathbb{Y}_0$

$$\psi_{s}\left(x\right) = \left(\begin{array}{c} -x \cdot \frac{\pi}{2} \\ 0 \end{array}\right)$$

We then define

$$\mathbf{g}_s = \mathbf{f} \circ \psi_s$$

Which gives us a total of 5 functions to study : \mathbf{g}_0 , \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 , \mathbf{g}_s

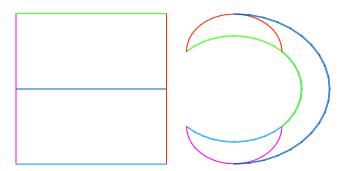


Figure: Atlas (left) and Workspace (right) with singularity

Polygon view [3]

Figure: Polygon (yellow) with holes (green)

Convex partitions

Figure: Convex decomposition of the holes

Delaunay triangulation

Figure: Delaunay triangulation

Outside triangulation



Figure: Outside triangulation

Suppressing fake boundaries



Figure: Inner (green) and outer (green + yellow) approximations

Additional use case

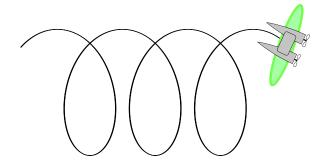


Figure: Robot sweeping an area

Modelization

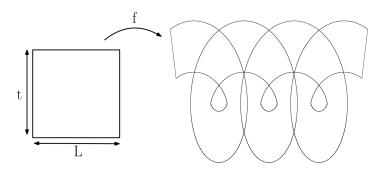


Figure: Modelization

Sweeped area with fakes

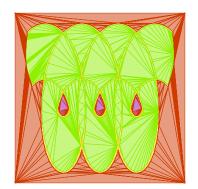


Figure: Sweeped area

Inner and outer approximation

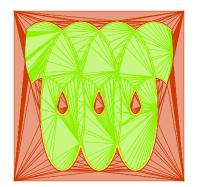


Figure: Fake boundaries removed

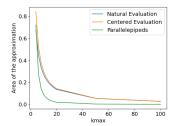
Conclusion

- Inner and outer approximation of the workspace
- Method based on parallelepipeds and Delaunay triangulation
- To be tested in higher dimensions

Bibliography

- [1] IGNAZI A., Manifold decomposition for interval analysis, SWIM 2023
- [2] ROHOU S., DESROCHERS B., LE BARS F., The Codac Library: A Catalog of Domains and Contractors, Acta Cybernetica Special Issue of SWIM 2022, 2024.
- [3] Susan Hert and Michael Seel. DD Convex Hulls and Delaunay Triangulations. In CGAL User and Reference Manual. CGAL Editorial Board, 6.0.1 edition, 2024.

Convergence



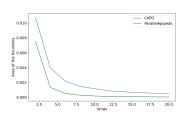


Figure: Convergences for the Henon map and the pendulum

Convergence speed

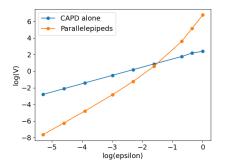


Figure: Convergence speed for the Lorenz system

Computation times

Dimension	Example	Computation time
2D	Henon map	0.01 s
	Pendulum (25 steps)	1.74 s
	Pendulum (last step)	0.21 s
	Robotic arm	0.01s
3D	Lorenz (0.05 s)	2.72 s
	Lorenz (0.1 s)	3.92 s
	Battery model (15 steps)	10 min
	Battery model (last step)	78 s
	Robotic arm	1.90 s

QR decomposition

Figure: Parallelepiped going "to infinity"

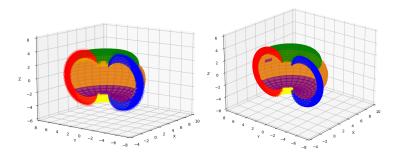


Figure: QR decomposition

