# Reachability Analysis to perform robotic missions safely

#### Maël GODARD, Lab-STICC, ROBEX Team, ENSTA Bretagne Tutors: Luc JAULIN (ENSTA Bretagne), Damien MASSE (UBO)













Reachability Analysis to perform robotic missions safely

Ξ.

・ロト ・ 四ト ・ モト ・ モト

Introduction

### Introductive Problem



#### Figure: Helios

・ロト ・御 と ・ ヨ と ・ ヨ と … ヨ Reachability Analysis to perform robotic missions safely

*\_\_\_\_\_\_*3/12

Introduction

# Introductive Problem





#### Figure: Base Situation

・ロト ・四ト ・ヨト ・ヨト ・ヨー Reachability Analysis to perform robotic missions safely

na@4/12

Introduction



#### Figure: Perfect Case

◆□▶ ◆舂▶ ◆注▶ ◆注▶ □注□ Reachability Analysis to perform robotic missions safely

na@4/12



Figure: Perturbated Case

Reachability Analysis to perform robotic missions safely

æ

na@4/12

# How can I compute the possible states of my robot?

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < Reachability Analysis to perform robotic missions safely

na@4/12

# Definition

#### Robot state : x

$$\mathscr{R}(t_r) = \left\{ \mathbf{y} | \mathbf{y} = \int_0^{t_r} f(\mathbf{x}(t), \mathbf{u}(t)) dt \right\}$$

・ロト ・四ト ・ヨト ・ヨト Reachability Analysis to perform robotic missions safely

э

# Definition

Robot state : x State Equation :  $\dot{x} = f(x,u)$ 

 ${\mathfrak u}\in{\mathbb U}$  : disturbance : inputs (motors) and perturbations (wind)

#### Definition (Reachable set at a point in time)

The Reachable Set at a given time  $t_r$  noted  $\mathscr{R}(t_r)$  is defined by :

$$\mathscr{R}(t_r) = \left\{ \mathbf{y} | \mathbf{y} = \int_0^{t_r} f(\mathbf{x}(t), \mathbf{u}(t)) dt \right\}$$

With  $x(0) \in \mathbb{X}_0$  the set of initial state and  $u[0, t_r] \in \mathbb{U}$  the disturbance set

Reachability Analysis to perform robotic missions safely

э

・ロト ・部ト ・ヨト ・ヨト

# Definition

Robot state : x State Equation :  $\dot{x} = f(x, u)$  $u \in \mathbb{U}$ : disturbance : inputs (motors) and perturbations (wind)

$$\mathscr{R}(t_r) = \left\{ \mathbf{y} | \mathbf{y} = \int_0^{t_r} f(\mathbf{x}(t), \mathbf{u}(t)) dt \right\}$$

・ロト ・四ト ・ヨト ・ヨト Reachability Analysis to perform robotic missions safely

э

# Definition

Robot state : x State Equation :  $\dot{x} = f(x, u)$  $u \in U$  : disturbance : inputs (motors) and perturbations (wind)

#### Definition (Reachable set at a point in time)

The Reachable Set at a given time  $t_r$  noted  $\mathscr{R}(t_r)$  is defined by :

$$\mathscr{R}(t_r) = \left\{ y | y = \int_0^{t_r} f(x(t), u(t)) dt \right\}$$

With  $x(0) \in \mathbb{X}_0$  the set of initial state and  $u[0, t_r] \in \mathbb{U}$  the disturbance set

← □ ト < □ ト < 三 ト < 三 ト < 三 シ ○ へ ○ 5/
 Reachability Analysis to perform robotic missions safely
</p>





2

na@5/12



Reachability Analysis to perform robotic missions safely

2

na@5/12



Reachability Analysis to perform robotic missions safely

Ξ.

৩৫৫₅/12



Reachability Analysis to perform robotic missions safely

Ξ.

৩৫৫₅/12

Reachability Analysis Use cases Conclusion



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 Reachability Analysis to perform robotic missions safely

୬९९6/12

Reachability Analysis

# Representations



ヘロア 人間ア 人間ア 人間ア Reachability Analysis to perform robotic missions safely

æ

୬९୯6/12



Reachability Analysis to perform robotic missions safely

Ξ.

୬९९6/12



Reachability Analysis to perform robotic missions safely

Ξ.

୬९९6/12

ヘロア 人間 アメヨア 小田 ア





ヘロア 人間ア 人間ア 人間ア Reachability Analysis to perform robotic missions safely

ъ.

୬९९6/12





ヘロア 人間ア 人間ア 人間ア Reachability Analysis to perform robotic missions safely

æ

୬९९6/12

### Discrete representation



Reachability Analysis to perform robotic missions safely

æ

イロト イヨト イヨト イヨト

Reachability Analysis



ヘロア 人間 アメヨア 小田 ア Reachability Analysis to perform robotic missions safely

ъ.

Reachability Analysis



ヘロア 人間 アメヨア 小田 ア Reachability Analysis to perform robotic missions safely

ъ.



< □ ► < □ ► < Ξ ► < Ξ ► < Ξ ► < Ξ ► < Ξ < < </li>
 Reachability Analysis to perform robotic missions safely

Can be obtained by a guaranteed intregration of the State Equation:

- Lohner Algorithm (see [1])
- CAPD library



Reachability Analysis

# Continuous representation



ヘロア 人間 アメヨア 小田 ア Reachability Analysis to perform robotic missions safely

æ

୬**९**€8/12

Can be obtained by using:

• Interval Analysis (codac library, see [2])



の998/12

# Finite time : Reaching an area





#### Figure: Base Situation

#### (ロ) (部) (注) (注) (注) (注) Reachability Analysis to perform robotic missions safely

**ク**��9/12



#### Figure: Unsafe Case

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 二厘 Reachability Analysis to perform robotic missions safely

୬**୯**. ୧୨/12



Figure: Unsafe Trajectory

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 二厘 Reachability Analysis to perform robotic missions safely

୬९୯%9/12



#### Figure: Safe Case

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣… Reachability Analysis to perform robotic missions safely

೨९⇔10/12

# Infinite time : Obstacle avoidance



#### Figure: Continuous Representation

Reachability Analysis to perform robotic missions safely



#### Figure: Unsafe Case

Reachability Analysis to perform robotic missions safely

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10/12



Figure: Safe Case

Reachability Analysis to perform robotic missions safely

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10/12

# Conclusion

#### • Ensuring robot safety

- Dicrete / Continuous representation
- Different ways to estimate the Reachable Set (see References)

In my case Interval Analysis and optimal control



# Conclusion

#### • Ensuring robot safety

#### • Dicrete / Continuous representation

• Different ways to estimate the Reachable Set (see References)

In my case Interval Analysis and optimal control

 $\begin{array}{ccc} <\square \succ & <\square & <\blacksquare & <\blacksquare & <\blacksquare & > & <\blacksquare & \\ \\ \mbox{Reachability Analysis to perform robotic missions safely} \end{array}$ 

# Conclusion

- Ensuring robot safety
- Dicrete / Continuous representation
- Different ways to estimate the Reachable Set (see References)

In my case Interval Analysis and optimal control

# Conclusion

- Ensuring robot safety
- Dicrete / Continuous representation
- Different ways to estimate the Reachable Set (see References)

In my case Interval Analysis and optimal control

Conclusion



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣… Reachability Analysis to perform robotic missions safely

୬ବଙ11/12

Conclusion



◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 □ Reachability Analysis to perform robotic missions safely

୬९୯11/12

# Thank you for listening

Reachability Analysis to perform robotic missions safely

# References

[1] Lohner R. J., Enclosing the solutions of ordinary initial and boundary value problems, *Computerarithmetic*, pp. 225–286, 1987.

[2] Rohou S., Jaulin L., Mihaylova L., Le Bars F, Veres S., Guaranteed computation of robot trajectories, *Robotics and Autonomous Systems*, Volume 93, 2017, Pages 76-84.

Lew T., Bonalli R., Pavone M., Exact Characterization of the Convex Hulls of Reachable Sets, *62nd IEEE Conference on Decision and Control (CDC 2023)*, Dec 2023, Singapour, Singapore.

Damers J., Jaulin L., Rohou S., Lie symmetries applied to interval integration, *Automatica*, Volume 14, 2022.