template <typename T>
void PEIBOS3D(AnalyticFunction<T> f, AnalyticFunction<T>& psi_0, vector<vector<int>> generators , double epsilon, Vector offset, Figure3D& figure_3d)
{
ColorMap cmap = peibos_cmap();
// Generate the symmetries from the generators
vector<OctaSym> symmetries = generate_symmetries(generators, psi_0);
for (int i = 0; i < symmetries.size(); i++)
{
OctaSym symmetry = symmetries[i];
for (double t1 = -1; t1 < 1; t1 += epsilon)
{
for (double t2 = -1;t2 < 1; t2+=epsilon)
{
IntervalVector X({{t1,t1+epsilon},{t2,t2+epsilon}});
IntervalVector Y = symmetry(psi_0.eval(X))+offset;
IntervalMatrix JJf=f.diff(Y);
auto xc = X.mid();
auto yc = (symmetry(psi_0.eval(xc))+offset).mid();
IntervalMatrix JJf_punc=f.diff(yc).mid();
// Center of the parallelepiped
Vector z = f.eval(yc).mid();
// Maximum error computation
double rho = error( JJf, JJf_punc, psi_0, symmetry, X);
IntervalMatrix Jz = (JJf_punc * IntervalMatrix(symmetry.permutation_matrix()) * psi_0.diff(xc)).mid();
// Inflation of the parallelepiped
Matrix A = inflate_flat_parallelepiped(Jz, epsilon, rho);
figure_3d.draw_parallelepiped(z, A, cmap.color(((double)i)/((double)symmetries.size()-1.0)));
}
}
}
}
template <typename T>
void PEIBOS3D(capd::IMap& gamma, vector<double> tfs, AnalyticFunction<T>& psi_0, vector<vector<int>> generators , double epsilon, Vector offset, Figure3D& figure_3d)
{
ColorMap cmap = peibos_cmap();
// CAPD solver setup
capd::IOdeSolver solver(gamma, 20);
solver.setAbsoluteTolerance(1e-20);
solver.setRelativeTolerance(1e-20);
for (double tf : tfs)
{
capd::ITimeMap timeMap(solver);
capd::ITimeMap timeMap_punc(solver);
capd::interval initialTime(0.);
capd::interval finalTime(tf);
// Generate the symmetries from the generators
vector<OctaSym> symmetries = generate_symmetries(generators, psi_0);
for (int i = 0; i < symmetries.size(); i++)
{
OctaSym symmetry = symmetries[i];
for (double t1 = -1; t1 < 1; t1 += epsilon)
{
for (double t2 = -1;t2 < 1; t2+=epsilon)
{
// To get the flow function and its Jacobian (monodromy matrix) for [x]
IntervalVector X({{t1,t1+epsilon},{t2,t2+epsilon}});
IntervalVector Y = symmetry(psi_0.eval(X))+offset;
capd::IMatrix monodromyMatrix(3,3);
capd::ITimeMap::SolutionCurve solution(initialTime);
capd::IVector c(3);
c[0] = to_capd(Y[0]);
c[1] = to_capd(Y[1]);
c[2] = to_capd(Y[2]);
capd::C1Rect2Set s(c);
timeMap(finalTime, s, solution);
capd::IVector result = timeMap(finalTime, s, monodromyMatrix);
IntervalMatrix JJf=to_codac(monodromyMatrix);
// To get the flow function and its Jacobian (monodromy matrix) for x_hat
auto xc = X.mid();
auto yc = (symmetry(psi_0.eval(xc))+offset).mid();
capd::IMatrix monodromyMatrix_punc(3,3);
capd::ITimeMap::SolutionCurve solution_punct(initialTime);
capd::IVector c_punct(3);
c_punct[0] = to_capd(yc[0]);
c_punct[1] = to_capd(yc[1]);
c_punct[2] = to_capd(yc[2]);
capd::C1Rect2Set s_punct(c_punct);
timeMap_punc(finalTime, s_punct, solution_punct);
capd::IVector result_punct = timeMap_punc(finalTime, s_punct, monodromyMatrix_punc);
IntervalMatrix JJf_punc=to_codac(monodromyMatrix_punc);
// Center of the parallelepiped
Vector z = Vector(to_codac(result).mid());
// Maximum error computation
double rho = error( JJf, JJf_punc, psi_0, symmetry, X);
IntervalMatrix Jz = (JJf_punc * IntervalMatrix(symmetry.permutation_matrix()) * psi_0.diff(xc)).mid();
// Inflation of the parallelepiped
Matrix A = inflate_flat_parallelepiped(Jz, epsilon, rho);
figure_3d.draw_parallelepiped(z, A, peibos_cmap().color(((double)i)/((double)symmetries.size()-1.0)));
}
}
}
}
}